• Title/Summary/Keyword: 제설염

Search Result 21, Processing Time 0.028 seconds

A Study on Cause Analysis and Countermeasures of Chloride Attack of Reinforced Earth Retaining Walls Installed on Bridge Abutment (염해로 인한 교대부 보강토옹벽 손상 원인 분석 연구)

  • Do, Jong-Nam;Kim, Nag-Young;Cho, Nam-Hun;You, Kwang-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.59-64
    • /
    • 2018
  • The damages to the reinforced earth retaining wall are divided into the front wall, foundation, drainage and upper slope. Damage of reinforced earth retaining wall is mainly caused by damage caused by drainage problem in the field. Recently, damage caused by snow removal materials have been occurred. Recently, the amount of snow removal materials used in winter is increasing due to abnormal weather. This chlorides degrades the concrete structure, where the reinforced earth retaining wall was no exception. There has recently been a case in which the front wall of the reinforced earth retaining wall deteriorates due to the chlorides introduced into the back filling portion through the drainage passage. Therefore, in this study, the cause of damages of reinforced earth retaining wall constructed in bridge abutment was analyzed, and an analytical study was conducted on the countermeasure. As a result, it was found that chlorides, which was introduced through the drainage system in the expansion joint of the bridge shift part or the upper structure, is infiltrated into the back part of the reinforced earth retaining wall and damaged. Therefore, it is suggested to improve the drainage system and restored the stiffness of the front wall.

Trend of Decorative Chromium Plating on Plastics(POP) for Domestic Automotives (자동차 국내 내외장크롬도금의 동향 (3가크롬도금을 중심으로))

  • U, Chang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.207-207
    • /
    • 2015
  • 국내 자동차메이커는 디자인고급화를 위하여 08년 이후 다양한 표면처리를 적용하고 있다. 특히 외장부품은 다크크롬, 짙은크롬, 반광등은 코드화 작업을 마쳤다. 2010년이후에는 겨울철 제설염으로 인한 6가크롬도금의 취약성을 발견하고 2011년 제설염 테스트 규격개정을 작업을 완료하였으며, 2015년이후 출시 차량은 6가크롬은 삭제하였으며, 3가크롬도금으로 큰 전환이 일어났다. 또한 라디에이타그릴은 대형화흐름으로 기존의 $50dm^2$이하의 디자인이 $100dm^2$이상 디자인으로 변경하는 추세이다. 이러한 변화에 도금공장은 기존라인으로 생산이 어려워 신규LINE 증설로 대응하고 있으나, 불량의 증가로 채산성이 악화되고 있다.

  • PDF

Cosmetic Corrosion of 11 % Cr and 17 % Cr Ferritic Stainless Steels for Automotive Exhaust Systems in an Environment containing Deicing Salts (제설염 환경에서 자동차 배기계용 11% Cr, 17% Cr 페라이트 스테인리스강의 외면부식특성)

  • Beom, Won-Jin;Park, Chan-Jin;Kim, Yeong-Ho;Yu, Han-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.31-31
    • /
    • 2008
  • 복합 싸이클 시험 모니터링을 통해 NaCl, $CaCl_2$ 제설염 환경에서 11 % Cr, 17 % Cr 페라이트 스테인리스강의 외면부식특성을 조사하고자 하였다. 용액 내 NaCl 및 $CaCl_2$의 농도가 증가함에 따라 용액의 pH가 떨어졌으며, $CaCl_2$의 농도증가에 따른 산성화도가 NaCl에 비해 크게 나타났다. 염수분무-건조-습윤 과정의 반복으로 구성되어 있는 복합싸이클 시험 중 소재의 표면상태 변화를 모니터링 한 결과, 건조 과정 중에 공식이 시작되며, NaCl 환경의 경우엔 습윤과정 중에 $CaCl_2$ 환경의 경우엔 건조 중에 공식성장이 주로 이루어지는 것으로 확인되었다.

  • PDF

A Study of Skid Resistance Characteristics by Deicing Chemicals (제설제 사용으로 인한 노면 미끄럼저항 특성 연구)

  • Lee, Seung Woo;Woo, Chang Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.813-819
    • /
    • 2006
  • Skid Resistance is a index to represent the friction between tire and road surface, which influences driving safety. Skid resistance varies with the conditions of tire, abrasion of road surface, vehicle speed, drying, wet and freezing condition of road surfaces. Especially, freezing occurs when temperature drops below $0^{\circ}C$ followed by snow or rain causes decrease of skid resistance. To recover the decreased skid resistance deicing work is applied. As a results of deicing works, freezing condition is changed into wet condition. However the wet road surfaces containing the remaining deicings agents may not show the skid resistance of normal wet condition. In this study, skid resistances in the condition of freezing, deicing process and deicing agents remained after snow-removal are evaluated. The test results, skid resistance recover quickly when Pre-wetted salt spreading and NaCl was used as deicing method. Skid resistance of Deicing agents remained on the road surface showed that concrete is higher than asphalt. superior effect. Recovery rate of skid resistance by comparison wet condition is 54~80%.

Durability Characteristics of Limestone Powder added Concrete for Environment-Friendly Concrete (석회석미분말을 첨가한 친환경 시멘트콘크리트의 내구 특성)

  • Choi, Woo Hyeon;Park, Cheol Woo;Jung, Won Kyung;Jeon, Beom Joon;Kim, Gyu Seon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.59-67
    • /
    • 2012
  • During the manufacturing of Portland cement, CO2 gas is also necessarily produced through both decarbonation of calcium carbonate and kiln burning. By partially replacing the Portland cement with limestone powder, which is an inert filler in a concrete mixture, CO2 consumption can be reduced in a construction field. This study is to investigate the fundamental durability characteristics of limestone powder added concrete. Experimental variable was the replacement ratio of limestone powder from 0% to 25% with 5% increment. Durability characteristics were investigated by resistance to freeze-thaw, alkali-silica reaction and de-icing chemical in addition to the properties of fresh concrete. From test results, it was observed that the addition of limestone powder did not significantly affect the resistance to freeze-thaw reaction and de-icing chemical. The addition of limestone powder reduced the occurrence potential of alkali-silica reaction by reducing an alkali content in Portland cement.

An Experimental Study on Evaluation Methods for Scaling Resistance of Cement Concrete Pavement (시멘트 콘크리트 포장의 스케일링 저항성 평가방법에 관한 실험적 연구)

  • Lee, Hyeon-Gi;Oh, Hong-Seob;Sim, Jong-Sung;Shim, Jae-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.30-38
    • /
    • 2015
  • In cold-climate regions, deicing agents is used for smooth traffic on the road due to freezing and snowdrift in winter. The use of de-icing salts has resulted in the accelerated scaling damage of concrete with salt damage under freezing and thawing condition. Scaling is the deterioration of concrete where in the paste-mortar structure delaminates in flakes from the surface of the concrete. Due to such damage, concrete pavement causes various problems such as early deterioration according to the decrease in the thickness of cover concrete and user's stability issues. Accordingly, various tests and evaluation methods have been suggested in order to evaluate these phenomena in other countries. However, there have been no regulations for the evaluation method in South Korea, and related studies are also very rare. Therefore, in this study, the evaluation methods proposed by each institution and country were investigated and the experiments were performed according to each regulation, followed by the comparison and analysis of the results. Furthermore, this study aims to suggest the optimized experimental method adopted to domestic field through the discussion of such experimental methods and results.

Estimation of Service Life for Expressway Bridge Subjected to Chloride Ingress from De-icer (동절기 제설제 사용에 대한 고속도로 교량의 내구수명 평가)

  • Lee, Honam;Jeon, Chanki;Kim, Juho;Shim, Jaeyeong;Jeon, Inkyu
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.548-555
    • /
    • 2015
  • This paper aims to estimate the service life of the target bridge structures subjected to chloride ingress from de-icer, which is used for safety of vehicles in winter, by investigating the chloride ingress into concrete. In this study, the 10-year-old bridge structures were investigated by measuring the chloride along the depth from the exposed surface to derive the surface chloride concentration and the diffusion coefficient for the prediction of service life. The service life of each measured point on the structures were estimated with the surface chloride concentration and the diffusion coefficient by using Life-365 software. As a result, it was estimated for all measured points to have over 100-year service life. Furthermore, the diffusion coefficient and the service life from the measured data were compared to another method calculated with the concrete mix, considering the time dependency of diffusion coefficient.

Development of Nanomodified Snow-Melting Concrete Using Low-Temperature Phase-Change Material Impregnated Lightweight Aggregate (저온 상변화 물질 함침 경량골재를 이용한 나노 개질 융설 콘크리트 개발)

  • Kyoung, Joo-Hyun;Kim, Sean-Mi;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.787-792
    • /
    • 2022
  • In winter, the excessive use of deicing salt deteriorates concrete pavement durability. To reduce the amount of deicing salt used, phase-change materials (PCMs) potentially offer an alternative way to melt snow through their latent heat storage characteristics. In this research, thermal energy storage concrete was developed by using PCM-impregnated expanded clay as 50 % replacement to normal aggregate by volume. In addition, to improve the thermal efficiency of PCM lightweight aggregate (PCM-LWA)-incorporated concrete, multi-walled carbon nanotubes (MWCNTs) were incorporated in proportions of 0.10 %, 0.15 %, and 0.20 % by binder weight. Compressive strength testing and programmed thermal cycling were performed to evaluate the mechanical and thermal responses of the PCM-LWA concrete. Results showed a significant strength reduction of 54 % due to the PCM-LWA; however, the thermal performance of the PCM-LWA concrete was greatly improved with the addition of MWCNTs. Thermal test results showed that 0.10 % MWCNT-incorporated concrete had high thermal fatigue resistance as well as uniform heat flow, whereas specimens with 0.15 % and 0.20 % MWCNT content had a reduced thermal response due to supercooling when the ambient temperature was varied between -5℃ and 10℃.

Effects of Calcium Chloride and Eco-Friendly Deicer on the Plant Growth (염화칼슘과 친환경 제설제가 식물의 생장에 미치는 영향)

  • Shin, Seung-Sook;Park, Sang-Deog;Kim, Ho-Seop;Lee, Kyu-Song
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.5
    • /
    • pp.487-498
    • /
    • 2010
  • This article presents an effect of deicer such as $CaCl_2$(calcium chloride) and EFD(Eco-Friendly Deicer) composed by organic acids on the survival and growth of plant. Pine and bush clover which are main natural species on the road side, and young radish and kidney bean which are cultivation species used in this test that responses of survival and growth were analyzed as grade concentration of deicers. Bush clover showed the most sensitive survival response among 4 species to the deicer. Pine growth didn't have statistical significance as the kind of deicers and concentration variation, but growths of bush clover and kidney bean showed growth inhibition in concentration more than 3% of $CaCl_2$ and EFD1. The results of survival and growth for $CaCl_2$(calcium chloride) demonstrated that young radish and pine are tolerant species and bush clover and kidney bean are sensitive species. Although EFD1 manufactured by chemical showed the negative effect on the survival and growth of plants, EFD2 made with waste compost was confirmed that it has the positive influence to the survival and growth of the both sensitive and tolerant plant species for chloride.

Analysis for Chloride Penetration in Concrete under Deicing Agent using Multi Layer Diffusion (다층구조확산을 고려한 제설제에 노출된 콘크리트의 염화물 해석)

  • Seo, Ji-Seok;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.4
    • /
    • pp.114-122
    • /
    • 2016
  • Concrete is cost-benefit and high-durable construction material, however durability problem can be caused due to steel corrosion under chloride attack. Recently deicing salt has been widely spread in snowing season, which accelerates micro-cracks and scaling in surface concrete and the melted deicing salt causes corrosion in embedded steel. The previous governing equation of Fick's 2nd Law cannot evaluate the deteriorated surface concrete so that another technique is needed for the surface effect. This paper presents chloride penetration analysis technique for concrete subjected to deicing salt utilizing multi-layer diffusion model and time-dependent diffusion behavior. For the work, field investigation results of concrete pavement exposed deicing salt for 18 years are adopted. Through reverse analysis, deteriorated depth and increased diffusion coefficient in the depth are evaluated, which shows 12.5~15.0mm of deteriorated depth and increased diffusion coefficient by 2.0 times. The proposed technique can be effectively applied to concrete with two different diffusion coefficients considering enhanced or deteriorated surface conditions.