• Title/Summary/Keyword: 제동 토크

Search Result 41, Processing Time 0.031 seconds

Analysis of Performance for Exercise Load Adjustable Circular Eddy Current Load Brake system (운동 부하 조절이 가능한 원형 맴돌이전류 부하 제동장치의 성능 분석)

  • Na, G.S.;Lee, E.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.3
    • /
    • pp.231-236
    • /
    • 2015
  • In this study, we propose a non-contact circular eddy current load brake using permanent magnet that can be applied to the rehabilitation exercise equipment. The circular eddy current load brake is manufactured and is evaluated for performance. This has the torque value of 49% compared to a "ㄷ" type eddy current load brake having a fixed load. And we confirmed that load is regulated due to the conductivity and air gap. Proposed load brake is adjustable according to the user's condition and can be applied to the equipment having advantages such as miniaturization and cost reduction.

  • PDF

Study on The Regenerative Braking Method of Permanent Magnet Synchronous Motor for Maximum Regenerative Power. (순시 최대 회생에너지를 갖는 영구자석 동기전동기 제동기법에 대한 연구)

  • Kim, Woo-Jae;Won, Il-Kuen;Choo, Kyoung-Min;Hong, Sung-Woo;Kim, Jun-Chan;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.75-76
    • /
    • 2017
  • 본 논문에서는 속도에 따른 순시 최대 회생에너지를 갖는 제동기법이 제안되었다. 제안하는 기법을 기존 전동기 구동시스템에 적용시키기 위해 주변기기를 추가하지 않고 특정속도에서 최대 회생에너지를 갖는 토크를 발생시켜 전동기를 제동하였다. 또한 제안하는 기법의 회생 에너지가 기존의 기법보다 증가함을 시뮬레이션을 이용하여 검증하였다.

  • PDF

The Extreme Low Speed Motor Observer and Brake Torque Control Technologies (극 저속 전동기용 관측기 및 제동 토크 제어 기술)

  • Kim, Young-Choon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.363-368
    • /
    • 2013
  • This paper relates to the electric braking, the permanent magnet synchronous motor vector control is suspended until the applied, and propose a new scheme by the controller in the observer to estimate the position and velocity using the Resolver speed detector. In addition, as a way to control the speed by braking torque at low speed, the pole of a stop just before the stop electrical braking. As a result, noise and dust abatement, consumption, reduction of the brake shoe increase the maintainability of comfort and energy use, enhances the effect of EMU performance improved sikyeoteum could see.

Optimum Design for Reducing Field Induced Voltage and Torque ripple of WFSM for ISG using Response Surface Methodology (반응표면법을 이용한 ISG용 WFSM의 계자 유기 전압 및 토크 리플 저감 최적 설계)

  • Park, Jin-Cheol;Hong, Nyeon-Han;Hwang, Sung-Woo;Chai, Seung-Hee;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.806-807
    • /
    • 2015
  • Integrated Starter-Generator(ISG)는 스타터(Starter)와 발전기(Generator)를 하나의 장치로 통합한 형태의 자동차 부품 시스템이다. ISG는 높은 토크로 엔진을 돌려주어 차량의 원활한 Idle Stop & Go 가능하게 하고 차량 제동 시에는 발전기 역할을 하여 배터리를 충전한다. 본 논문에서는 ISG용 WFSM (Wound Field Synchronous Motor)의 초기모델에 반응표면법을 적용하여 계자 유기 전압 및 토크 리플 저감을 목표로 최적화 설계를 진행하였다.

  • PDF

A Evaluation of Emergency Braking Performance for Electro Mechanical Brake using Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기를 적용한 전기기계식 제동장치의 비상제동 성능평가)

  • Baek, Seung-Koo;Oh, Hyuck-Keun;Park, Joon-Hyuk;Kim, Seog-Won;Kim, Sang-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.170-177
    • /
    • 2020
  • This study examined the clamping force control method and the braking performance test results of an electromechanical brake (EMB) using braking test equipment. Most of the studies related to EMBs have been carried out in the automotive field, dealing mainly with the static test results for various control methods. On the other hand, this study performed a dynamic performance evaluation. The three-phase interior permanent magnet synchronous motor (IPMSM) was applied to drive the actuator of the EMB, and the analysis was verified by JMAG(Ver. 18.0), which is finite element method (FEM) software. The current control, speed control, and position control were used for clamping force control of the EMB, and the maximum torque per ampere (MTPA) control was applied to the current controller for efficient control. The EMB's emergency braking deceleration performance was tested in the same way as conventional pneumatic brake systems when the wheel of a train rotates at 110 km/h, 230 km/h, and 300 km/h. The emergency braking time, with the wheel stopped completely at the maximum rotational speed, was approximately 73 seconds. The similarity of the braking time and deceleration pattern was verified through a comparison with the performance test results of the pneumatic brake system applied to the next generation high-speed railway vehicle (HEMU-430X).

BLAC Drive System for Electro-Magnetic Brake (Electro-Magnetic Brake를 위한 BLAC 구동시스템)

  • Jeon, Mi-Rim;Lee, Jae-Hyun;Cho, Kwan-Yuhl;Mok, Hyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.335-341
    • /
    • 2010
  • The electric braking system obtains its braking force by a motor instead of the hydraulic brake which has been used in conventional automobile systems. Electric braking system is consisted of fewer numbers of components than hydraulic braking system, and it has effects of improved response and reduced braking distance for the ABS(Anti-lock Brake System) and ESC(Electronic Stability Control). This paper presents the BLAC motor drive system for Electro-Magnetic Brake(EMB). Proposed control system consists of the power converter for driving a motor and the digital control system for speed control, and the vector control is applied for fast torque response. It is verified through the simulation using Matlab/Simulink and experiment that the proposed BLAC drive system can be applied to EMB.

Performance Investigation of a Brake System Featuring Electro-Rheological Fluids (전기유동유체를 이용한 브레이크 시스템의 성능 고찰)

  • Kim, G.W.;Park, W.C.;Cheong, C.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.123-130
    • /
    • 1995
  • This study presents model synthesis and performance investigation of a new brake system using electro-rheological(ER) fluids. Field-dependent Bingham properties characterized by non-zero yield stresses of the ER fluids are experimentally distilled. These properties are then incorporated with the governing equation of the proposed brake system which features design simplicity, fast response and salient controllability. After analyzing system performance with respect to design parameters such as electrode gap and length, an appropriate size of the brake is designed and fabricated. Both simulation and experimental works are undertaken in order to determine the feasibility and efficiency of the proposed brake system. The system performances are justified by evaluating field-dependent braking torques as well as braking times.

  • PDF

BLDC Feed back Control System Under Open Circuit Accident (개방 사고시 BLDC 피드백 제어 시스템)

  • Im, Che-Young;Lim, Jin-Woo;Lee, Dong-Su;Lee, Jin-Woo;Lee, Seung-Ho;Woo, Dae-Hyun;Kim, Ju-Young;Kim, Nam-Hyun;Jung, Sang-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2221_2222
    • /
    • 2009
  • 본 논문에서는 BLDC 운전 중 각 상의 결상 사고에 따른 토크 및 속도의 최적화에 대해 연구하였다. BLDC 모터의 구동을 위하여 ATmega16이 사용되었으며 제어기법으로는 PWM(Pulse Width Modulation) 기법이 사용된다. 속도 제어는 Hall Sensor의 검출 속도에 따라 Duty비를 제어하여 이루어지며 회전자 위치는 Hall Sensor 검출 방식을 통하여 이루어진다. 이러한 BLDC 모터를 이용하여 예기치 못한 결상 상황의 발생 시 토크의 감소로 인한 급제동에 대비하여 부하에 상응하는 토크를 최대한 낼 수 있도록 알고리즘을 구현하였다.

  • PDF

Control of Rotational Angular Speed using Magneto-rheological Fluid (자기유변유체를 이용한 회전 각속력 제어)

  • 신성철;정재성;김정훈;이종원
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.67-72
    • /
    • 1999
  • A magneto-rheological(MR) fluid based rotary loading and braking device is developed. The loading and braking forces of the device are accurately adjustable by controlling the yield stress of MR fluid, so that the vibration control, the precision position control and the speed control of rotating machines equipped with the device can be achieved. As an engineering application, constant rotational speed regulation is conducted using the device manufactured in laboratory, introducing PI control action not only with varying torque due to gravitation, with initial angular speed, but also with constant external torque made by hand. To do this, first, mathematical model was obtained via experiments. And then, simulation was carried out, based on the experimentally identified model. Its result was confirmed through experiment. It is identified by simulation and experimental results that PI action leads to satisfactory control performance in both cases that varying torque due to gravitation, with initial angular speed, and constant external torque are applied.

  • PDF

A Study on the Structure of Hybrid Magnetic Gear with Armature Type Rotor (전기자 형태의 회전자를 갖는 하이브리드 마그네틱 기어의 구조에 관한 연구)

  • Gim, Chan-Seung;Park, Eui-Jong;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1235-1242
    • /
    • 2018
  • When the wind speed changes rapidly, the wind turbine is stopped for the safety of the power system and the mechanical system. At that moment, the wind turbine gearbox is damaged and broken due to the contact load of the gearbox. In addition, the problems such as increasing frictional heat and deteriorate of the brake occur, because the power of the blades is transmitted directly to the brakes. This paper proposes a hybrid magnetic gear shape that solves the problem caused by the contact of the mechanical gear, which is the power transmission device of the wind power generation system, and the power cutoff system. The shape of the hybrid magnetic gearsuitable for the wind power generation system is derived through the torque and loss analysis according to the shape of the hybrid magnetic gear by using the two dimensional finite analysis method.