• Title/Summary/Keyword: 제논 가스

Search Result 20, Processing Time 0.027 seconds

Laser absorption spectroscopy of ternary gas mixture of He-Ne-Xe in External Electrode Fluorescent Lamp (EEFL) (레이저 흡수 분광법을 이용한 He-Ne-Xe 상종가스의 외부전곡 램프의 $1s_4$ 공명준위와 $1s_5$ 준안정준위의 제논 원자 밀도에 대한 연구)

  • Jeong, S.H.;Oh, P.Y.;Lee, J.H.;Cho, G.S.;Choi, E.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.576-580
    • /
    • 2006
  • Mercury-free lamp, external electrode fluorescent lamp (EEFL) which includes the xenon gas, is now going on the research for the replacement of mercury lamp. The densities of excited xenon atom in the $1s_4$ resonance state and the $1s_5$ metastable state are investigated in the EEFL by a laser absorption spectroscopy under various gas pressures. We have measured the absorption signals for both $1s_4$ resonance and the $1s_5$ metastable state in the EEFL by varying the discharge currents for a given pressure. This basic absorption characteristic is very important for improvement of the VUV luminous efficiency of the EEFL as well as plasma display panel.

Factors Affecting the Minimum Detectable Activity of Radioactive Noble Gases (방사성 노블가스 측정을 위한 최소검출방사능 산출의 조절인자)

  • Park, Ji-young;Ko, Young Gun;Kim, Hyuncheol;Lim, Jong-Myoung;Lee, Wanno
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.301-308
    • /
    • 2018
  • Anthropogenic radioactive noble gases formed by nuclear fission are significant indicators used to monitor the nuclear activity of neighboring countries. In particular, radioactive xenon, owing to its abundant generation and short half-life, can be used to detect nuclear testing, and radioactive krypton has been used as a tracer to monitor the reprocessing of nuclear fuels. Released radioactive noble gases are in the atmosphere at infinitesimal amounts due to their dilution in the air and their short half-life decay. Therefore, to obtain reliable and significant data when performing measurement of noble gases in the atmosphere, the minimum detectable activity (MDA) for noble gases should be defined as low as possible. In this study, the MDA values for radioactive xenon and krypton were theoretically obtained based on the BfS-IAR system by collecting both noble gases simultaneously. In addition, various MDA methods, confidence level and analysis conditions were suggested to reduce and optimize MDA with an assessment of the factors affecting MDA. The current investigation indicated that maximizing the pretreatment efficiency and performance maintenance of the counter were the most important aspects for Xe. In the case of Kr, since sample activities are much higher than those of Xe, it is possible to change the target MDA or to simplification of the analysis system.

Development of Xenon feed system for a 300 W Hall-effect Thruster (300 W급 홀 추력기를 위한 제논연료공급장치 개발)

  • Kim, Youn-Ho;Seon, Jong-Ho;Kang, Seong-Min;Wee, Jung-Hyun;Yoon, Ho-Sung;Choe, Won-Ho;Lee, Jong-Sub;Seo, Mi-Hui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.419-424
    • /
    • 2009
  • A Xenon feed system has been developed for a 300 W Hall-effect thruster intended for orbit maintenance of small satellite. The system can store about 2 kg of xenon gas at 150 bar and is capable of controlling the mass flow rate of the gas at 0.5 SCCM resolution. The performance of the system is verified with a laboratory experiment. It is confirmed that the operation of the feed system is successful at a pressure level of $1.0{\times}10^{-6}$ torr in the vacuum chamber.

A Study of the Ionization Characteristics of Xenon Gas by Shock Compression (충격 압축에 의한 제논 가스의 이온화 특성 연구)

  • Lee, D.S.;Shin, J.R.;Choi, J.Y.;Choi, Y.S.;Kim, H.W.
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.493-502
    • /
    • 2010
  • In this paper, the ionization characteristics of noble gases are studied numerically behind strong shock waves. As a first step, the equilibrium ionization mechanism of noble gases is modeled in wide ranges of temperature and pressure. As a next step the equilibrium ionization model is coupled with fluid dynamic equations to analyze the local thermodynamic equilibrium(LTE) ionization process at high temperature and pressure conditions behind the strong imploding shock waves. The ionization characteristics of xenon gas is studied in a wide range of test conditions with thermal radiation effects. Hence, the results give optimal conditions of maximum ionization and radiation behind the imploding shock waves.

대기 중 노블가스 분석

  • Lee, Wan-Ro;Lee, Seung-Il;Choe, Sang-Do;Jo, Yeong-Hyeon;Jeong, Geun-Ho;Kim, Hui-Ryeong;Lee, Chang-U;Choe, Geun-Sik;Gang, Mun-Ja;Jeon, In;Geum, Dong-Gwon
    • 대한방사선방어학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.168-169
    • /
    • 2010
  • PDF

Properties of Longitudinal & Transverse Discharge in a Tubular Fluorescent Lamp (직관형 형광램프의 종단방전과 횡단방전의 특성)

  • Chung, J.Y.;Kim, J.H.;Jeong, J.M.;Jin, D.J.;Kim, H.C.;Bong, J.H.;Hwang, H.C.;Lee, M.S.;Koo, J.H.;Cho, G.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.322-330
    • /
    • 2008
  • The properties of discharge, luminance, and spectroscopy are investigated in a longitudinal and transverse discharge fluorescent lamps with tube of outer diameter 4 mm. The sample lamps are prepared to be three kinds of gas composition such as mercury lamps of Ne(95%)+Ar(5%)+Hg(2 mg), the mercury-free lamps of Xe 100% and Ne+Xe(4%). The gas pressure is in the range of $5{\sim}300\;Torr$. In the mercury lamps, the longitudinal discharge having a positive column is high in luminance and efficiency, while the transverse discharge is no luminance at all. In the Xe-lamps, the transverse discharge shows relatively good in efficiency as compared with the longitudinal discharge which has a high discharge voltage and a low luminance and efficiency. In the transverse discharge of relatively high efficiency, a pure Xe(100%) gas discharge has a higher efficiency than the mixture gas of Ne+Xe(4%). Through these experiments, the properties of mercury and xenon lamps are verified. In the mercury lamps, the longitudinal discharge of tubular fluorescent lamps is high in luminance and efficiency, while the transverse discharge of flat panel fluorescent lamps are low in luminance efficiency. In the mercury-free lamps, the flat fluorescent lamps of transverse discharge having a high pressure ${\sim}100\;Torr$ with the pure Xe-gas are verified to be suggestable.

Experimental Study on Design Parameters of Explosive-driven High-intensity Flash Generator (폭발형 고섬광 발생장치의 설계 변수에 관한 실험적 연구)

  • Kim, Kyung Sik;Ahn, Jae-Woon;Yang, Hui-Won;Kwon, Mi-Ra
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.283-288
    • /
    • 2016
  • A non-lethal weapon is a device that can subdue targets without causing death or mortal wounds. A high-intensity flash generator can negate electro-optical sensors and cause temporal flash blindness with a high intensity of light. In this study, we derive the design parameters of an explosive-driven high-intensity flash generator that uses the interaction of plasma caused by the detonation of explosives with surrounding inert gas. To determine the design parameters of the flash generator, we analyze test results measured using optical sensors. The experimental results show that the light intensity of xenon gas is about four times higher than that of air. In addition, the intensity increases with the weight of the explosive, and the inert gas cross-sectional area encountered a shock wave in the airframe. The light intensity caused by a double-initiation generator is about two times higher than that of the single-initiation generator.

High Luminous Efficiency Flat Light Source with Xe mixture Gas Discharge and Areal Brightness Control Method (제논 혼합가스를 이용한 고효율 면광원과 국부적 밝기 제어 방식)

  • Jung, Jae-Chul;Seo, In-Woo;Oh, Byung-Joo;Whang, Ki-Woong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.153-157
    • /
    • 2009
  • A Highly efficient Mercury-free Flat Fluorescent Lamp (MFFL) with dielectric barrier Xe gas discharge was developed for an alternative of conventional line-type Cold Cathode Fluorescent Lamps (CCFLs) which shows a wide voltage margin and a stable discharge operation for diffuse glow discharge with an application of a auxiliary electrode. Electro-optic characteristics of the MFFL were examined through the changes in ambient temperature, total pressure and Xe partial pressure. the single cell is expanded into a multi-structured configuration to realize a large sized lamp by a simple repetition of the single cells, and a new driving scheme is proposed for an adaptive brightness control using dual auxiliary electrodes and bi-polar drive scheme. In addition, interesting application of this ultra high luminance flat lamp by the optimization of the gas condition and the pattern of the rear phosphor layer is suggested as a good alternative of daylight lamp source

  • PDF