Browse > Article
http://dx.doi.org/10.7733/jnfcwt.2018.16.3.301

Factors Affecting the Minimum Detectable Activity of Radioactive Noble Gases  

Park, Ji-young (Korea Atomic Energy Research Institute)
Ko, Young Gun (Korea Atomic Energy Research Institute)
Kim, Hyuncheol (Korea Atomic Energy Research Institute)
Lim, Jong-Myoung (Korea Atomic Energy Research Institute)
Lee, Wanno (Korea Atomic Energy Research Institute)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.16, no.3, 2018 , pp. 301-308 More about this Journal
Abstract
Anthropogenic radioactive noble gases formed by nuclear fission are significant indicators used to monitor the nuclear activity of neighboring countries. In particular, radioactive xenon, owing to its abundant generation and short half-life, can be used to detect nuclear testing, and radioactive krypton has been used as a tracer to monitor the reprocessing of nuclear fuels. Released radioactive noble gases are in the atmosphere at infinitesimal amounts due to their dilution in the air and their short half-life decay. Therefore, to obtain reliable and significant data when performing measurement of noble gases in the atmosphere, the minimum detectable activity (MDA) for noble gases should be defined as low as possible. In this study, the MDA values for radioactive xenon and krypton were theoretically obtained based on the BfS-IAR system by collecting both noble gases simultaneously. In addition, various MDA methods, confidence level and analysis conditions were suggested to reduce and optimize MDA with an assessment of the factors affecting MDA. The current investigation indicated that maximizing the pretreatment efficiency and performance maintenance of the counter were the most important aspects for Xe. In the case of Kr, since sample activities are much higher than those of Xe, it is possible to change the target MDA or to simplification of the analysis system.
Keywords
$^{85}Kr$; $^{133}Xe$; Radioactive noble gas; Minimum detectable activity (MDA); Nuclear detection;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.M. Shin, J.J. Park, M.S. Yang, S.Y. Joo, and S.W. Shin, "A State of the Art Report on Treatment Technology of Kr/Xe", Korea Atomic Energy Institute Report, 4-14, KAERI/AR-667/2003 (2003).
2 D.A. Atwood, "Radionuclides in the Environment", 1st ed., 179-189, Wiley & Sons, New York (2013).
3 W.N. Lee, Y.Y. Ji, S. Choi, Y.H. Cho, J.M. Lim, H.B. Kang, H. Lee, M.J. Kang, and G.S. Choi, "Operation and Technology Development of Radioactive Xenon and Krypton Detection Equipment", Korea Atomic Energy Institute Report, 3-15, KAERI/RR-3581/2012 (2013).
4 D.K. Keum, H.S. Lee, H.J. Choi, H.S. Kang, W.N. Lee, and C.W. Lee, "Development of Atmospheric Kr-85 Analysis Technology", Korea Atomic Energy Institute Report, 1-7, KAERI/RR-2468/2004 (2004).
5 W.N. Lee, S.D. Choi, H.R. Kim, G.H. Chung, Y.H. Cho, M.J. Kang, G.S. Choi, and C.W. Lee, "Study on the Estimation of Minimum Detectable Activity (MDA) in Atmospheric Radioxenon" Proc. Of the Korean Radioactive Waste Society Conference, Vol. 17, Incheon, 399-400 (2010).
6 H. Stockburger, H. Sartorius, and A. Sittkus, "Measurement of the Krypton-85 and xenon-133 activity in the atmosphere", Zeitschrift fur Naturforschung A, 32(11), 1249-1253 (1977).
7 L. A. Currie, "Limits for Qualitative Detection and Quantitative Determination", Anal. Chem., 40(3), 586-593 (1968).   DOI
8 Y. Igarashi, H. Sartorius, T. Miyao, W. Weiss, K. Fushimi, M. Aoyama, K. Hirose, and H.Y. Inoue, "85Kr and 133Xe Monitoring at MRI, Tsukuba and Its Importance", J. Environ. Radioact., 48(2), 191-202 (2000).   DOI
9 D.K. Keum, G.S. Choi, G.H. Chung, W.N. Lee, Y.H. Cho, and C.W. Lee, "Build up of Radioactive Krypton and Xenon Analysis System", Korea Atomic Energy Institute Report, 1-14, KAERI/RR-2933/2007 (2007).
10 P. Häussinger, R. Glatthaar, W. Rhode, H. Kick, C. Benkmann, J. Weber, H.J. Wunschel, V. Stenke, E. Leicht, and H. Stenger, "Noble Gases", Ullmann's Encyclopedia of Industrial Chemistry, 24, 391-394, John Wiley and Sons, New York (2003).
11 M.H Lee, H.S. Lee, G.H. Hong, Y.H. Cho, and C.W. Lee, "Determination of Minimum Detectable Activity in Environmental Samples", J. Korean Asso. Radiat. Prot., 24(3), 171-184 (1999).
12 B.S. Pasternack and N.H. Harley, "Detectable Limits for Radionuclides in the Analysis of Multi-component Gamma ray Spectrometer Data", Nucl. Instr. And Meth., 91(3), 533-540 (1971).   DOI
13 K. Weise, K. Hübel, E. Rose, M. Schläger, D. Schrammel, M. Taschne, and R. Michel. "Bayesian Decision Threshold, Detection Limit and Confidence Limits in Ionizing-Radiation Measurement", Radiat Prot Dosimetry., 121(1), 52-63 (2006).   DOI
14 P.R.J. Saey, A. Becker, L.E. De Geer, and G. Wotawa, "Radioxenon Isotopes: Created in an Underground Nuclear Explosion - Measured in a Verification Detector", Proc. Of Europe European Geosciences Union Assembly, Vol. 9, 09773, Vienna (2007).
15 S.A. Czyz, A.T. Farsoni, and L. Ranjbar, "A Prototype Detection System for Atmospheric Monitoring of Xenon Radioisotopes", Nucl. Instrum. Methods Phys. Res. A, 884, 64-69 (2018).   DOI
16 A. Janssens, J. Buysse, and E. Cottems, "The Measurement of Low-Level Atmospheric Krypton-85", Nucl. Instrum. Methods Phys. Res. A, 234(2), 335-343 (1985).   DOI
17 J.O. Ro$\ss$, "Simulation of Atmospheric Krypton-85 Transport to Assess the Detectability of Clandestine Nuclear Reprocessing", Ph.D. Thesis, Universitat Hamburg (2010).
18 P.R.J. Saey, A. Ringbom, T.W. Bowyer, M. Zahringer, M. Auer, A. Faanhof, C. Labuschagne, M.S. Al-Rashidi, U. Tippawan, and B. Verboomen, "Worldwide Measurements of Radioxenon Background Near Isotope Production Facilities, a Nuclear Power Plant and at Remote Sites: the ''EU/JA-II'' Project", J. Radioanal. Nucl. Chem., 296(2), 1133-1142 (2013).   DOI
19 C.G. Doll, C.M. Sorensen, T.W. Bowyer, J.I. Friese, J.C. Hayes, E. Hmann, and R. Kephart., "Abatement of Xenon and Iodine Emissions from Medical Isotope Production Facilities", J. Environ. Radioact., 130, 33-43 (2014).   DOI
20 Annual Report, Comprehensive Nuclear-Test-Ban Treaty Organization Report, 11-15, CTBT/ES/2015/5 (2015).
21 C.B. Sivels, J.I. McIntyre, T.W. Bowyer, M.B. Kalinowski, and S.A. Pozzi1. "A Review of the Developments of Radioxenon Detectors for Nuclear Explosion Monitoring", J. Radioanal. Nucl. Chem., 314(2), 829-841 (2017).   DOI
22 J.M. Kirkpatrick, R. Venkataraman, and B.M. Young, "Minimum Detectable Activity, Systematic Uncertainties, and the ISO 11929 Standard", J. Radioanal Nucl. Chem., 296(2), 1005-1010 (2013).   DOI
23 C. Schlosser, M. Konrad and S. Schmid, "85Kr Activity Determination in Tropospheric Air", International Foundation of the High Altitude Research Stations Jungfraujoch and Gornergrat (HFSJG), Activity Report 2016, 78-79 (2017).
24 S. Generoso, P. Achim, M. Morin, P. Gross, G. Le Petit, and C. Moulin, "Seasonal Variability of Xe-133 Global Atmospheric Background: Characterization and Implications for the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty", J. Geophys. Res. Atmos., 123(3), 1865-1882 (2018).
25 J. Schulze, M. Auer, and R. Werzi, "Low Level Radioactivity Measurement in Support of the CTBTO", Appl. Radiat. Isot., 53(1-2), 23-30 (2000).   DOI
26 J. Bieringer, C. Schlosser, H. Sartorius, and S. Schmid, "Trace Analysis of Aerosol Bound Particulates and Noble Gases at the BfS in Germany", Appl. Radiat. Isot., 67(5), 672-677 (2009).   DOI