일반 컴퓨터 시스템에서 CPU 이용률이나 디스크 입출력 같은 프로세스에 의해 소요되는 시간 계산이나 빈번한 스크린 갱신을 요구하는 어플리케이션에서 시각을 제공하는 시각 장치의 정확성과 정밀도는 매우 중요하다. 그러나 컴퓨터 시각 장치들의 자체 오류 요소로 인해 이런 높은 정확성과 정밀도를 요구하는 시간관련 어플리케이션을 만족시키지 못한다. 컴퓨터 시스템에서 보다 정확하고 정밀한 시간을 측정하기 위해서는 시각 장치의 정확성과 정밀도가 우선, 보장되어야 하고 그러기 위해서는 시각 장치들의 정밀도를 떨어뜨리는 오류 요인에 대한 분석이 선행되어야 한다. 본 논문에서는 일반 컴퓨터 시스템의 시각 장치들에서 나타나는 오류 요소들을 알아보고, 일반 PC에서 정밀하게 측정하는 방법론을 제시하고자 한다.
목단피의 oxypaeoniflorin 및 paeoniflorin의 함량 분석 및 원료의 표준화를 위하여 분석법의 개발 및 검증을 실시하였다. 기존의 보고된 분석법을 개선하여 분석법을 개발하고 확립된 분석법에 대한 분석법 검증을 실시하였다. 분석법 검증은 특이성, 직선성, 정확성, 정밀성, 검출한계 및 정량한계를 통하여 분석법의 신뢰성을 검증하였다. HPLC를 이용한 분석방법에서 표준용액의 머무름 시간과 목단피 추출물의 머무름 시간이 일치하였으며, 동일한 spectrum을 나타내는 것을 확인하여 분석법의 특이성을 검증하였다. Oxypaeoniflorin 및 paeoniflorin의 검량선은 상관계수 값이 각각 1.0000, 0.9998로 나타나 우수한 직선성을 보여주어 분석에 적합함을 확인하였다. 농도를 아는 시료에 인위적으로 저농도, 중간농도, 고농도의 표준물질을 첨가하여 정밀성 및 정확성을 계산하였다. Oxypaeoniflorin 및 paeoniflorin의 정밀성은 일간 정밀성, 일내 정밀성으로 확인하였으며, oxypaeoniflorin 및 paeoniflorin의 일간 정밀성은 각각 0.70~3.19%, 1.74~2.43% 수준으로 확인되었으며, 일내 정밀성은 0.32~0.92%, 0.62~2.28% 수준으로 5% 이하의 우수한 정밀성을 보였다. 정확성 측정 결과 oxypaeoniflorin 및 paeoniflorin의 일간 정확성은 98.33~102.11%, 97.72~118.12%를 나타내었으며, 일내 정확성은 98.44~101.56%, 97.10~112.00% 수준으로 우수한 정확성을 나타내었다. Oxypaeoniflorin 및 paeoniflorin의 검출한계는 각각 $0.23{\mu}g/mL$, $0.25{\mu}g/mL$였고 정량한계는 $0.71{\mu}g/mL$, $0.77{\mu}g/mL$로 나타내어, 저농도에서도 검출이 가능함을 확인하였다. 분석법 검증 결과, 확립된 분석법은 특이성, 직선성, 정밀성, 정확성, 검출한계 및 정량한계가 모두 우수한 분석법임을 검증하였다. 또한, 검증된 분석법을 이용하여 목단피 추출물 시료 중 oxypaeoniflorin 및 paeoniflorin의 함량을 분석한 결과 oxypaeoniflorin $6.43{\pm}0.20mg/dry\;weight\;g$, paeoniflorin $20.25{\pm}0.37mg/dry\;weigh\; g$의 함량을 가지고 있는 것으로 확인되었다. 본 연구 결과 목단피의 지표성분인 oxypaeoniflorin 및 paeoniflorin의 HPLC를 이용한 동시분석방법이 적합한 분석방법임이 검증되었다.
사이버나이프를 이용한 두경부와 체부 등의 정위방사선수술에서는 목표점의 식별 및 위치 추적에 대하여 높은 정확성을 요구한다. 본 연구에서는 사이버나이프의 targeting의 정확성을 평가하고자 한다. 사이버나이프의 targeting의 정확성을 평가하기 위하여 두상 팬텀을 사용하였다. 환자 치료시와 동일한 CT 영상 프로토콜로 두상 팬텀의 영상을 얻어 치료계획을 세웠다. 팬텀에 radiochromic 필름을 삽입한 뒤 수립된 치료계획에 맞춰 팬텀에 방사선을 조사하였다. 방사선 조사시 위치 추적은 skull과 fiducial 추적의 두 가지 방법을 사용하였다. 방사선에 조사된 radiochromic 필름을 분석하여 정확성을 평가하였다. 본 연구를 통하여 실시간 영상유도 기술을 사용하는 사이버나이프는 약 1 mm의 targeting 에러를 보였다.
이 논문에서는 커널 에지 방식의 얼굴의 특징점을 추출하는 방법과 Adaboost를 이용한 얼굴의 특징점을 추출하는 방법에 대해서 비교 한다. 커널 에지를 이용한 방법은 10개의 커널을 이용하여 추출된 에지를 이용하여 얼굴의 특징점을 추출해 낸다. 커널의 개수를 줄여 사용한다면 실시간에 가능하고, 정확성을 높이기 위해서는 이미지의 전처리 단계에서 자극적인 효과를 준다면 정확성 또한 높아 질 것이다. 반면에 Adaboost를 이용한 방법은 각각의 특징점들을 오프라인 상에서 학습을 하고 온라인상에서 실시간으로 특징점을 추출하는 방법을 사용하였다. 각 각의 학습과정에 있어서 positive, negative 이미지를 더 많이 사용한다면 정확성이 더 높아질 것이다. 한 가지 주목할 만 한 점은 입과 같은 특징점을 추출하기 어려운 영역에서도 높은 정확성을 보였다.
본 연구는 UML로 작성된 객체지향 다이어그램의 일관성과 정착성을 검증하기 위한 메타모델에 관한 연구이다. 일관성이란 하나의 요구사항으로 표현된 여러 가지 UML 다이어그램이 통일된 의미로 표현되었는가를 나타내는 성질이고, 정확성은 UML로 작성한 다이어그램이 UML의 표준에 적합하게 작성이 되었는가를 나타내는 성질이다. 이러한 일관성과 정확성을 검증하기 위해서는 각 다이어그램의 표준모델과 다이어그램간의 관계를 파악할 필요가 있으며 메타모델이 다이어그램간의 관계와 다이어그램 자체의 표준모델을 적절하게 표현하여 주므로 메타모델을 구성하는 작업이 필요하다. 본 연구에서는 기존의 메타모델에 관한 연구를 분석하여 새로운 형태의 구성요소와 관계로 표현된 메타모델을 제시하고 일관성과 정확성을 검증하기 위한 구성요소를 도출한다.
본 연구는 근적외선분광법을 이용하여 우리나라에서 재배되고 있는 목초류 중 외형적 특성이 유사한 이탈리안 라이그라스, 페레니얼 라이그라스와 톨 페스큐 종자의 초종판별 가능성을 검토하고자 수행되었다. 근적외선분광기를 이용하여 목초류 종자를 가시파장 대역대(680~1,099 nm), NIRS 파장 대역대(1,100-2,500 nm) 및 NIRS 전체 파장 대역대(680-2,500 nm)로 구분하여 스펙트라를 얻은 후 1차 미분과 8 nm gap으로 수 처리를 수행하였으며 부분최소자승(PLS) 회귀분석법을 통해 초종판별 검량식을 개발하고 판별 정확성을 검증하였다. 목초류의 초종판별 정확성은 가시파장대역에서 SECV 1.732, $R^2cv$ 0.96으로 가장 판별 정확성이 낮았으며 NIRS 전체 파장대역에서 SECV 1.182, $R^2cv$ 0.98로 가장 높은 판별 정확성을 나타내었다. 파장대역별 예측 정확성은 NIR 파장대역(1,100-2,500 nm)에서 교차검증오차(SECV) 1.319에서 예측 오차(SEP) 1.288로 낮아졌으며 가시영역대(680~1,099)는 SECV 1.732에서 SEP 1.749로 약간 높아졌다. Discrimination equation 분석법에 의한 NIRS 전체 파장대역별 목초류 초종의 판별 결과는 초종간에 판별 정확성의 차이가 크게 나타났으며 이탈리안 라이그라스의 'Hits'는 68%로 가장 낮았으며 페레니얼 라이그라스가 78%의 정확성으로 가장 높게 나타났다. 따라서 NIRS를 이용한 목초류 초종의 판별분석이 가능할 것으로 판단되었다.
본 연구는 근적외선분광법을 이용하여 국내에서 재배중인 수수×수단그라스 교잡종 품 판별 가능성을 검토하고자 수행되었다. 근적외선분광기를 이용하여 수수×수단그라스 교잡종 종자를 가시파장 대역대 (680 - 1,099 nm), NIRS 파장 대역대 (1,100 - 2,500 nm) 및 NIRS 전체 파장 대역대 (680 - 2,500 nm)로 구분하여 스펙트라를 얻은 후 1차 미분과 8 nm gap으로 수 처리를 수행하였으며 부분최소자승 (PLS) 회귀분석법을 통해 품종판별 검량식을 개발하고 판별 정확성을 검증하였다. 수수×수단그라스 교잡종품종 판별의 정확성은 NIR파장대역에서 SECV 8.44 그리고 R2CV 0.89로 가장 판별 정확성이 낮았으며 NIRS 전체 파장대역에서 SECV 7.88 그리고 R2CV 0.90로 가장 높은 판별 정확성을 나타내었다. 파장대역별 예측 정확성은 NIR 파장대역 (1,100 - 2,500 nm)이 가장 우수하였으며, 교차검증오차 (SECV) 8.44에서 예측오차 (SEP) 12.03로 높아졌으며 가시영역대 (680 - 1,099)는 SECV 8.23에서 SEP 12.51로 높아졌다. Discrimination equation 분석법에 의한 NIRS 전체 파장대역별 수수×수단그라스 교잡종 종자의 판별 결과는 품종간에 판별 정확성의 차이가 크게 나타났으며 1, 2, 4 그리고 8번 품종 (G-7, BMR Gold II, Honey chew and SX-17)에서는 100 %의 정확성으로 가장 높게 나타났다. 따라서 NIRS를 이용한 수수×수단그라스 교잡종 종자의 판별분석이 가능할 것으로 판단되었다.
빅데이터 시대가 도래되면서 과거와 비교할 수 없을 만큼의 방대하고 다양한 데이터가 생산됨에 따라 기존의 데이터 분석 도구의 사용은 한계에 부딪히게 되었다. 따라서 기존의 분석 도구보다 효율적이고 정확성이 높은 데이터 분석 도구를 필요로 하게 되었고, 빅데이터를 처리할 수 있는 분석 도구들에 대한 많은 연구들이 진행되어 왔다. R과 Apache Spark는 대표적인 데이터 분석 도구로 기계 학습을 위한 기능을 제공하고 있다. 본 논문에서는 기계 학습을 활용하여 두 개의 널리 알려진 데이터 분석 도구인 R과 Apache Spark의 데이터 분석 성능을 비교함으로써 보다 효율적이고 정확성이 높은 도구를 모색하고자 한다.
경량 임베디드 디바이스가 저전력 네트워킹뿐만 아니라 고정밀 센서 데이터 획득과 같은 영역에서 널리 활용되면서 소프트웨어 타이머에 대한 높은 시간정확성이 요구된다. 이 논문은 경량 MCU(Micro controller unit)를 장착한 임베디드 디바이스 환경에서 소프트웨어 타이머의 정확성 문제를 다룬다. 먼저, 소프트웨어 타이머의 전형적 구현 모델을 구현할 때 오차를 발생시키는 주요 오버헤드의 유형을 면밀히 분석한 후에 실제 환경에서 오버헤드를 측정한다. 이 오버헤드를 타이머 설정주기에 반영하는 오버헤드 보정 기법을 통해 소프트웨어 타이머의 정확성을 향상시킬 수 있다는 점을 검증한다.
협업 필터링은 추천시스템들 중에서 가장 널리 사용되는 기법이다. 그러나 협업 필터링은 추천의 정확성을 떨어뜨리는 희소성과 확장성 문제를 가지고 있으며 이를 해결하기 위한 다양한 연구가 이루어지고 있다. 본 논문에서는 협업필터링의 희소성과 확장성의 문제를 해결하기 위해 가중치를 사용한 기법을 제안한다. 제안한 기법은 데이터 셋에서 추천의 정확성을 높이기 위해 평가값이 4이상인 데이터들만을 사용하여 아이템을 선호하는 사용자 정보를 분석한다. 아이템의 장르 정보와 분석한 사용자 정보를 유사도 계산 시 가중치로 사용하고 임계값 이상의 유사도를 가진 데이터들만으로 예측값을 계산하여 평가되지 않은 데이터의 평가값으로 사용한다. 제안한 기법은 아이템에 대한 특성을 분석하여 예측값을 계산함으로써 희소성을 줄임과 동시에 정확성을 더 높일 수 있고 새로운 아이템과 사용자가 등록되었을 때 분석된 정보를 바탕으로 빠른 분류가 가능하다. 실험을 통해 제안한 기법이 기존의 아이템 기반, 장르 기반 기법보다 추천의 정확성이 향상되는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.