DOI QR코드

DOI QR Code

Overhead Compensation Technique to Enhance the Accuracy of a Software Timer for Light-weight Embedded Device

경량 임베디드 디바이스 환경에서 소프트웨어 타이머의 정확성 향상을 위한 오버헤드 보정기법

  • 김희철 (대구대학교 정보통신공학부)
  • Received : 2019.02.27
  • Accepted : 2019.07.22
  • Published : 2019.08.30

Abstract

As light-weight embedded devices become widely used in the area of low-power networking and high-precision sensor data acquisition, support for time-critical applications becomes essential for the light-weight embedded devices. This paper addresses the accuracy issue of a software timer for small or tiny embedded devices equiped with light-weight MCUs(Micro controller units). We first explore the characteristics of overhead in a typical implementation of a software timer, and then measure the overhead through a realistic implementation. Using the measurement result, we propose an overhead compensation technique which reduces the overhead from the hardware timer-tick.

경량 임베디드 디바이스가 저전력 네트워킹뿐만 아니라 고정밀 센서 데이터 획득과 같은 영역에서 널리 활용되면서 소프트웨어 타이머에 대한 높은 시간정확성이 요구된다. 이 논문은 경량 MCU(Micro controller unit)를 장착한 임베디드 디바이스 환경에서 소프트웨어 타이머의 정확성 문제를 다룬다. 먼저, 소프트웨어 타이머의 전형적 구현 모델을 구현할 때 오차를 발생시키는 주요 오버헤드의 유형을 면밀히 분석한 후에 실제 환경에서 오버헤드를 측정한다. 이 오버헤드를 타이머 설정주기에 반영하는 오버헤드 보정 기법을 통해 소프트웨어 타이머의 정확성을 향상시킬 수 있다는 점을 검증한다.

Keywords

References

  1. M Sethi, P. and Sarangi, S., "Internet of Things: Architectures, Protocols, and Applications," Journal of Electrical and Computer Engineering, Article ID 9324035, 2017.
  2. Mounica1, A. and Subbareddy, G., "Zigbee transmitter for IOT Wireless Devices", International Journal of VLSI Design & Communication Systems (VLSICS), Vol. 8, No. 5, pp. 1-13, 2017. https://doi.org/10.5121/vlsic.2017.8501
  3. Kim, H., Hong, W., Yoo, J. and Yoo, S., "Experimental Research Testbeds for Large-Scale WSNs: A Survey from the Architectural Perspective," International Journal of Distributed Sensor Networks, Vol. 11, No. 3, Article No. 2, 2015.
  4. Dong, W., Chen, C., Liu, X., Liu, Y., Bu, J. and Zheng, K., "SenSpire OS: A Predictable, Flexible, and Efficient OS for Wireless Sensor Networks," IEEE Transactions on Computers, Vol. 60, No. 12, pp. 1788-1801, 2011. https://doi.org/10.1109/TC.2011.58
  5. Aron, M. and Druschel, P., "Soft Timers: Efficient Microsecond Software Timer Support for Network Processing", ACM Tractions on Computer Systems, Vol. 18, No. 3, pp. 197-228, 2000. https://doi.org/10.1145/354871.354872
  6. Eswaran, A., Rowe, A. and Rajkumar, R., "Nano-RK: An Energy-Aware Resource-Centric RTOS for Sensor Networks," Proceedings of IEEE Real-Time Systems Symposium, pp. 1-10, 2005.
  7. Al-Suhail, G., Jero, M. and Nikolakopoulos, G., "A Practical Survey on Wireless Sensor Network Platforms," Journal of Communications Technology, Electronics and Computer Science, Issue 13, pp. 23-29, 2017.
  8. Kim, H. and Yoo, S., "Implementation and Analysis of IEEE 802.15.4 Compliant Software based on a Vertically Decomposed Task Model," Journal of the Korea Industrial Information Systems Research, Vol. 19, No 1, pp. 53-60, 2014. https://doi.org/10.9723/jksiis.2014.19.1.053
  9. Kim, T. and Ahn, K. "Mitigating Hidden Nodes Collision and Performance Enhancement in IEEE 802.15.4 Wireless Sensor Networks," Journal of Korea Information Processing Society, Vol. 4, No. 7, pp. 235-238, 2015.
  10. Stanislowski, D., Vilajosana, X., Wang, Q., Watteyne, T. and Pister., K., "Adaptive Synchronization in IEEE802.15.4e networks," IEEE Transactions on Industrial Informations, Vol. 10. No. 1, pp. 795-802, 2014. https://doi.org/10.1109/TII.2013.2255062
  11. Gonzalez, S., Camp, T. and Jaffres-Runser, K., "The Sticking Heartbeat Aperture Resynchronization Protocol," 26th International Conference on Computer Communication and Networks, pp. 1-8, 2017.
  12. Kim, H., "Improving the Reliability of Beacon Synchronization of IEEE 802.15.4 MAC Protocol using a Reception Time Compensation Scheme," Journal of the Korea Industrial Information Systems Research, Vol. 23, No 3, pp. 1-11, 2018. https://doi.org/10.9723/JKSIIS.2018.23.3.001
  13. IEEE Std 802.15.4-2011: Part 15.4: Medium Access control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Computer Society, 2011.
  14. Khoufi, I., Minet, P. and Rmili, B., "Beacon Advertising in an IEEE 802.15.4e TSCH Network for Space Launch Vehicles," 7th European Conference for Aeronautics and Aerospace Science (EUCASS), 2017.

Cited by

  1. 윈도우10에 실시간 성능을 제공하기 위한 타이머 구현 및 성능 측정 vol.20, pp.10, 2020, https://doi.org/10.5392/jkca.2020.20.10.014