• Title/Summary/Keyword: 정적하중 해석

Search Result 528, Processing Time 0.029 seconds

Prediction of Failure Mode Under Static Loading in Long Span Bridge Deck Slabs by FEM (유한요소해석에 의한 장지간 바닥판의 정적파괴형태 예측)

  • Park, Woo Jin;Hwang, Hoon Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.52-59
    • /
    • 2012
  • An analytical model is presented to predict the static behavior of the long-span prestressed concrete bridge deck(the long-span PSC deck). The finite element analysis is performed and the results are compared with that of the previous experimental test. The load-deflection relationship curves by FEM are in good agreement with the results reported in the previous study. The failure mode of all test specimens is predicted by the punching shear in this study. It is also observed in the previous experimental test. The main objective of this paper is presenting supportive method to predict static behavior of the long-span PSC deck slab. It is not simulating the punching shear behavior graphically.

A Study on Shear-Fatigue Behavior of Reinforced Concrete Beams (철근(鐵筋)콘크리트보의 전단피로거동(剪斷疲勞擧動)에 관(關)한 연구(硏究))

  • Chang, Dong Il;Kwak, Kae Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.173-185
    • /
    • 1988
  • This study is intended to investigate the shear fatigue behaviour of reinforced concrete beams based on a series of experiments, and verify the test results in comparison with the analysis result obtained by using a nonlinear finite element method. The experiments are divided into the tests under the static loading and the test under the dynamic fatigue loading. In order to investigate the shear failure behaviour under static loadings, four specimens for three different cases were made and tested. The behaviour of stirrups with the static stress and strain variations were observed based on the results of these tests. In the fatigue fracture tests, eleven specimens for four different cases were made and tested. Various observations on mid-span deflection of test beams and tensile strains of reinforcing steels as well as stirrups were made against various fatigue loadings. It may be concluded that the shear fatigue strengths of R.C. specimens at one million cycles turn out to be approximately 65 percent of the static ultimate shear strength.

  • PDF

Damage Detection of Truss Structures Using Genetic Algorithm (유전 알고리즘을 이용한 트러스 구조물 손상탐지)

  • Kim, Hyung-Mi;Lee, Jae-Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.549-558
    • /
    • 2012
  • This study identifies the damage detection of truss structures by using genetic algorithm(GA) from changed elements properties. To model the damaged truss structures, the modulus of elasticity of some specific elements is reduced. The analysis of truss structures is performed with static analysis by applying uniform load, and the location and extent of structural damage is detected by comparing the stain of each element of healthy truss structures with damaged truss structures using genetic algorithm. In this study, some numerical examples are presented to detect the location and extent of damage using genetic algorithm.

Overstrength Factors of Buckling Restrained Braced Frames (좌굴방지가새가 설치된 철골건물의 초과강도계수)

  • Kim, Jin-Koo;Park, Jun-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.67-72
    • /
    • 2004
  • In this study the overstrength factors of medium to low-rise bucking restrained braced frames (BRBF) were evaluated. Various design variables, such as number of stories, span length, yield strength of the brace, level of earthquake load, and the response modification factors. The overstrength factors were obtained using the nonlinear static analysis following the procedure proposed by ATC-19. According to the analysis results, the overstrength factors obtained from this study were generally larger than those proposed in 'AISC/SEAOC Recommended Provisions for BRBF'.

Active Control of Earthquake Responses Using Fuzzy Supervisory Control Technique (퍼지관리제어기법을 이용한 지진응답의 능동제어)

  • 박관순;고현무;옥승용
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.75-81
    • /
    • 2001
  • Fuzzy supervisory control method is studied for the active control of earthquake excited structures. The proposed algorithm supervises and tunes previously designed control gains by evaluating the state of a structure through the fuzzy inference mechanism, which uses the information of relative displacements and velocities. Example designs and numerical simulations of earthquake exited three degrees of freedom structures are performed to prove the validity of the proposed control algorithm. Comparative results with conventional LQR method show that the proposed method is effective for the vibration suppression of earthquake excited structures.

  • PDF

Structural Safety Evaluation of Basic Design Model of Linear Actuator for Blade Pitch Control of eVTOL Aircraft (eVTOL 항공기 블레이드 피치 제어용 선형 구동기 기본설계 모델의 구조 안전성 평가)

  • Young-Cheol, Kim;Dong-Hyeop, Kim;Sang-Woo, Kim;Jeong-Hyun, Kang;Dohyung, Kim
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.106-113
    • /
    • 2022
  • The structural safety of the basic design model of the linear actuator for the individual blade pitch control of eVTOL personal aircraft was investigated. Stress analysis based on the finite element method was conducted, and the margin of safety was calculated to examine the structural safety under stall load conditions. Additionally, fatigue analysis was conducted to evaluate the fatigue life of the linear actuators under operating conditions. The load history with the blade pitch angle was calculated using multi-body dynamics analysis, and the static load analysis was used to obtain the stress distribution for the rated load. As a result, it was confirmed that the safety margins exceeded zero, and the fatigue lives of all linear actuator components exceeded 107 cycles, indicating a safe structural range.

Linear and Nonlinear Analysis of Initially Stressed Elastic Solid (초기응력이 있는 탄성체의 선형 및 비선형해석 -플레이트 스트립을 중심으로)

  • 권영두;최진민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.642-651
    • /
    • 1988
  • The present paper develops finite element procedures to calculate displacements, strains and stresses in initially stressed elastic solids subjected to static or time-dependent loading conditions. As a point of departure, we employ Hamilton's principle to obtain nonlinear equations of motion characterizing the displacement in a solid. The equations of motion reduce to linear equations of motion if incremental stresses are assumed to be infinitesimal. In the case of linear problem, finite element solutions are obtained by Newmark's direct integration method and by modal analysis. An analytic solution is referred to compare with the linear finite element solution. In the case of nonlinear problem, finite element solutions are obtained by Newton-Raphson iteration method and compared with the linear solution. Finally, the effect of the order of Gauss-Legendre numerical integration on the nonlinear finite element solution, has been investigated.

Fatigue Analysis to Determine the Repair Limit for the Damaged Fastener Hole of Aging Aircraft(P-3CK) (노후항공기(P-3CK) 패스너 홀 손상 수리 한계 설정을 위한 피로해석)

  • Kim, Young-Jin;Kim, Hyeung-Geun;Kim, Chang-Young;Chang, Joong-Jin;Lee, Mal-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.12
    • /
    • pp.959-966
    • /
    • 2013
  • In this study, based on P-3CK project using aging aircraft without any design information, the structural assessments of fastener holes to repair the short edge distance defects are investigated. For this purpose, the nacelle longeron which has many defects is selected and then conservative stress is calculated by performing the static analysis of 1.5ED, 1.8ED, 2.0ED defects of longeron fastener holes. This result applies to TWIST standard load spectrum to generate flight load spectrum. Then the crack growth analysis is performed by using flight load spectrum. Through this, the validity of a repaired fastener hole is evaluated. Finally, the standard of repair and the period of maintenance for a defected fastener hole are established.

Strength Analysis of a Slender Doubler Plate of Ship Structure subjected to the Longitudinal In-plane Compression (종방향 면내 압출하중을 받는 세장한 선박 이중판의 강도 해석)

  • Juh-Hyeok Ham
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.92-105
    • /
    • 2000
  • A study for the structural strength evaluation on the slender doubler plate has been performed through the systematic evaluation process. In order to estimate the proper static strength of doubler plate subjected to the longitudinal in-plane compression, elasto-plastic large deflection analysis is introduced including the contact effect between main plate and doubler. The characteristics of stiffness and strength variation are discussed based on their results. Also, in order to compare the doubler structure with the original strength of main plate without doubler, a simple formula for the evaluation of the equivalent flat plate thickness is derived based on the additional series analysis of flat plate structure. Using this derived equation, the thickness change of a equivalent flat plate is analyzed according to the variation of various design parameters of doubler plate and some design guides are suggested in order to maintain the original strength of main plate without doubler reinforcement. Finally, correlation between derived equivalent flat plate formula and the developed buckling strength formulas by author et al. is discovered and these relations are formulated for the future development of simple strength evaluation formula of doubler plate structure.

  • PDF

Numerical Analysis of a Crack in the Vicinity of an Inclusion (함유체에 인접한 크랙에 관한 수치해석)

  • 이정기;라원석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.465-474
    • /
    • 1999
  • A recently developed numerical method based on a volume integral formulation is applied to calculate the accurate stress intensity factors at the crack tips in unbounded isotropic solids in the presence of multiple anisotropic inclusions and cracks subject to external loads. In this paper, a detailed analysis of the stress intensity factors are carried out for an unbounded isotropic matrix containing an orthotropic cylindrical inclusion and a crack. The accuracy and effectiveness of the new method are examined through comparison with results obtained from analytical method and finite element method using ANSYS. It is demonstrated that this new method is very accurate and effective for solving plane elastostatic problems in unbounded solids containing anisotropic inclusions and cracks.

  • PDF