• Title/Summary/Keyword: 정위적방사선수술

Search Result 114, Processing Time 0.03 seconds

QA of a stereotactic radiosurgery system for clinical application (정위방사선수술 시스템의 임상 적용을 위한 QA)

  • 조병철;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.89-94
    • /
    • 1999
  • We developed a sterotactic radiosurgery system which is comprised of 1) collimators with small circular aperture, 2) an angiographic target localizer, 3) a target localizer used for alignment of planned target position with isocenter of treatment machine, and 4) a treatment planning system named LinaPel. In this study, we performed a series of treatment simulations to specify and analyze geometrical errors contained our in-house radiosurgery system. As results, 1) using Geometrical Phantom(Radionics,USA), the accuracy of target localization by LinaPel was determined as Avg. =(equation omitted) the accuracy of mechanical isocenter was found out to be 0.6 $\pm$ 0.2 mm, 3) the positional difference of target localization which determined by CT and angiography was 0.8 mm, and their size difference was 1.5 mm, and 4) the positional error during whole treatment was found out to be 0.9 $\pm$ 0.3 mm. With these results, we concluded that our in-house radiosurgery system can be used clinically. However, these range of accuracies need periodical quality assurance strongly.

  • PDF

Comparison of Stereotactic Radiosurgery and Whole Brain Radiotherapy in Patients with Four or More Brain Metastases (4개 이상의 다발성 전이성 뇌종양의 정위적 방사선수술과 전뇌 방사선조사의 비교)

  • Kim, Cheol-Jin;Baek, Mi-Young;Park, Sung-Kwang;Ahn, Ki-Jung;Cho, Heung-Lae
    • Radiation Oncology Journal
    • /
    • v.27 no.3
    • /
    • pp.163-168
    • /
    • 2009
  • Purpose: This study was a retrospective evaluation of the efficacy of stereotactic radiosurgery (SRS) in patients with >4 metastases to the brain. Materials and Methods: Between January 2004 and December 2006, 68 patients with $\geq$4 multiple brain metastases were included and reviewed retrospectively. Twenty-nine patients received SRS and 39 patients received whole brain radiotherapy (WBRT). Patients with small cell lung cancers and melanomas were excluded. The primary lesions were non-small cell lung cancer (69.0%) and breast cancer (13.8%) in the SRS group and non-small cell lung cancer (64.1%), breast cancer (15.4%), colorectal cancer (12.8%), esophageal cancer (5.1%) in the WBRT group. SRS involved gamma-knife radiosurgery and delivered 10~20 Gy (median, 16 Gy) in a single fraction with a 50% marginal dose. WBRT was delivered daily in 3 Gy fractions, for a total of 30 Gy. After completion of treatment, a follow-up brain MRI or a contrast-enhanced brain CT was reviewed. The overall survival and intracranial progression-free survival were compared in each group. Results: The median follow-up period was 5 months (range, 2~19 months) in the SRS group and 6 months (range, 4~23 months) in the WBRT group. The mean number of metastatic lesions in the SRS and WBRT groups was 6 and 5, respectively. The intracranial progression-free survival and overall survival in the SRS group was 5.1 and 5.6 months, respectively, in comparison to 6.1 and 7.2 months, respectively, in the WBRT group. Conclusion: SRS was less effective than WBRT in the treatment of patients with >4 metastases to the brain.

Assessment of the Optic-guided Patient Positioning for Spinal Stereotactic Radiosurgery Using Novalis ExacTrac System (노발리스 ExacTrac system을 이용한 척추 정위 방사선수술 방법 평가)

  • 이동준;손문준;최광영;이기택;최찬영;황금철;황충진
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.218-223
    • /
    • 2002
  • Stereotactic radiosurgery for intracranial lesion is well established since the Lars Leksell first introduced radiosurgery concept in 1951 Its use in the treatment of spinal lesion has been limited by the availability of effective immobilization devices. The first clinical experience of the spinal stereotactic radiosurgery technique was reported by Hamilton AJ. in 1995. Recently, Optic-guided patient positioning technique for extracranial stereotactic radiosurgery was developed and reported. This study is for assess the target positioning accuracy of the optic guided patient positioning system Exactrac (BrainLab., Inc, Germany). We have designed phantom for assess the accuracy of spinal stereotactic radiosurgery The infrared reflective body markers attached to the relatively immobile part of the body and a series of 2 mm CT images was taken. The image sets were transferred to the planning computer. During the radiosurgery treatment, we measure the real-time display showing the positioning values from Exactrac computer. And we compare the isocenter deviation from irradiated center point of the film which was mounted on the lesion site of the phantom and pin hole site of that film. The accuracy of the ExacTrac system in positioning a target point shows enough for the clinical applications.

  • PDF

Three-Dimensional Dose Distribution for the System of Linear Accelerator-based Stereotactic Radiosurgery (LINAC을 이용한 뇌정위적 방사선 수술에 대한 3 차원 선량분포)

  • Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.121-128
    • /
    • 1991
  • Radiosurgery treatment in the brain requires detailed information on three-dimensional dose distribution. A three-dimensional treatment planning is a prerequisite for treatment plan optimization. It must cover 3-D methods for representing the patient, the dose distributions, and beam settings. Three-dimensional dose models for non-coplanar moving arcs were developed using measured single beam data and efficient 3-D dose algorithms for circular fields. The implementation of three dimensional dose algorithms with stereotactic radiosurgery and the application of the algorithms to several cases are discussed.

  • PDF

Evaluation of Accuracy on Hitchcoke CT/angio localization system using QA head phantom (QA용 두부 팬톰을 이용한 Hitchcoke CT 및 혈관조영 정위적 시스템에 대한 정확도 평가)

  • 김성현;서태석;윤세철;손병철;김문찬;신경섭
    • Progress in Medical Physics
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • In order to provide complementary image data, CT(computed tomography), MR(magnetic resonance) and angiography have been used in the field of Stereotactic Radiosurgery(SRS) and neurosurgery. The aim of this work is to develop 3-D stereotactic localization system in order to determine the precise shape, size and location of the lesion in the brain in the field of Stereotactic Radiosurgery(SRS) and neurosurgery using multi-image modality and multi purpose QA phantom. In order to obtain accurate position of a target, Hitchcoke stereotactic frame and CT/angiography localizers were rigidly attached to the phantom with nine targets dispersed in 3-D space. The algorithms to obtain a 3-D stereotactic coordinates of the target have been developed using the images of the geometrical phantom which were taken by CT/angiography. Positions of targets computed by our algorithms were compared to the absolute position assigned in the phantom. Outlines of targets on each CT image were superimposed each other on angiography images. A spatial mean distance errors were 1.02${\pm}$0.17mm for CT with a 512${\times}$512 matrix and 2mm slice thickness, 0.41${\pm}$0.05mm for angiogra- phy localization. The resulting accuracy in the target localization suggests that the developed system has enough Qualification for Stereotactic Radiosurgery (SRS).

  • PDF

Search of Characteristic for Dose Distribution Presented by Multi­isocentric Stereotactic Radiosurgical Plan Using Linear Accelerator (선형 가속기를 이용한 정위적 방사선 수술시 병소내 선량분포의 특성조사)

  • 최경식;오승종;이형구;최보영;전흥재;서태석
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.225-233
    • /
    • 2003
  • The goal of a radiation treatment plan is to deliver a homogeneous dose to a target with minimal irradiation of the adjacent normal tissues. Dose uniformity is especially important for stereotactic radiosurgery using a linear accelerator. The dose uniformity and high dose delivery of a single spherical dose distribution exceed 70%. This also results with a similar stereotactic radiosurgical plan using a Gamma Knife. The dose distribution produced in a stereotactic radiosurgical plan using a Gamma Knife and Linear accelerator is spherical, and the application of the sphere packing arrangement in a real radiosurgical plan requires much time and skill. In this study, we found a characteristic of dose distribution with transformation of beam parameters that must be considered in a radiosurgical plan for effective radiosurgery. First, we assumed a cylinder type tumor model and a cube type tumor model. Secondly, the results of the tumor models were compared and analyzed with dose profiles and DVH_(Dose Volume Histogram) representative dose distribution. We found the optimal composition of beam parameters_(i.e. collimator size, number of isocenter, gap of isocenters etc.), which allowed the tumor models to be involved in the isodose curve at a high level. In conclusion, the characteristics found in this study are helpful for improving the effectiveness and speed of a radiosurgical plan for stereotactic radiosurgery.

  • PDF

Isocenter Check and QA of Tactic Radiosurgery Devices Using EPID (EPID를 이용한 정위적방사선수술의 중심점 검사에 대한 연구)

  • Shin, Kyo Chul;Choi, Sang Gyu;Kim, Jung Kee;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.281-287
    • /
    • 2014
  • The Winston Lutz test, which checks the accuracy of the isocenter for stereotactic radiosurgery (SRS), was performed with the commercial electronic portal imaging device (EPID). The usual Winston Lutz test with film was also performed for comparison with the test with EPID. The maximum difference in isocenter between the two methods was 0.32 mm. The Winston Lutz test using EPID is practical as it can reduce time and avoid human errors compared to the test with film.

Confirmation of the Dose Distribution by Stereotactic Radiosurgery Technique with a Multi-purpose Phantom (다용도 팬톰에서 정위방사선수술기법의 선량 정확도 확인)

  • Yoo Hyung Jun;Kim Il Han;Ha Sung Whan;Park Charn Il;Hur Sun Nyung;Kang Wee-Saing
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.179-185
    • /
    • 2002
  • Purpose : For the purpose of quality assurance of self-developed stereotactic radiosurgery system, a multi-purpose phantom was fabricated, and accuracy of radiation dose distribution during radiosurgery was measured using this phantom. Materials and Methods : A farmer chamber, a 0.125 cc ion chamber and a diode detector were used for the dosimetry. Six MV x-ray from a linear accelerator (CL2100C, Varian) with stereotactic radiosurgery technique (Green Knife) was used, and multi-purpose phantom was attached to a stereotactic frame (Fisher type). Dosimetry was done by combinations of locations of the detectors in the phantom, fixed or arc beams, gantry angles $(20^{\circ}\~100^{\circ})$, and size of the circular tertiary collimators (inner diameters of $10\~40\;mm$). Results : The measurement error was less than $0.5\%$ by Farmer chamber, $0.5\%$ for 0.125 cc ion chamber, and less than $2\%$ for diode detector for the fixed beam, single arc beam, and 5-arc beam setup. Conclusion : We confirmed the accuracy of dose distribution with the radiosurgery system developed in our institute and the data from this study would be able to be effectively used for the improvement of quality assurance of stereotactic radiosurgery or fractionated stereotactic radiotherapy system.

Isocenter Reproducibility with Mask Fixation System in Stereotactic Radiosurgery (정위 마스크 시스템을 사용한 방사선수술시 회전중심점의 재현성)

  • 이동준;손문준;이기택;최찬영;황금철;황충진
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.135-138
    • /
    • 2002
  • Fractionated stereotactic radiosurguy (FSRS) requires precise and reproducible patient set up. For these reasons non-invasive mask fixation methods have been used in Linac based FSRS. In this study, we measured and assessed the isocenter reproducibility using a commercial head mask fixation system based on thermoplastic materials. For the verification and the measurement of isocenter deviation a special acrylic brain phantom was designed. The designed phantom has 22 vertical rods and each rod has different lengths. At the end of the 8 rods, the monochromic film is attached and irradiated due to planned target position. Deviations of isocenter were measured separately for each direction. The mean deviation showed 0.4 mm in longitudinal direction, 0.1 mm in the lateral direction, 0.1 mm in the anterior-posterior direction of the treatment couch. The data demonstrates the high accuracy and reproducibility. This study reinforces previous literature published.

  • PDF