• Title/Summary/Keyword: 정보 탐색

Search Result 6,128, Processing Time 0.033 seconds

Patterns of Subsistence Production in the Early Bronze Age in the Seoul/Gyeonggi Region (서울·경기지역 청동기시대 전기 생계자원(生計資源) 생산방식)

  • LEE Minyoung
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.3
    • /
    • pp.22-44
    • /
    • 2023
  • The subsistence economics of the early Bronze Age has focused on explaining the intensity of agricultural practices without sufficiently taking into account the diversity of production methods that may arise from cultural types or environmental factors. The problem appears to stem from paying insufficient attention to the question whether we should understand the transition from the Neolithic Age to the Bronze Age as continuous or discrete. This has hitherto blocked an avenue to investigate the gradual changes in subsistence resource production methods. Taking as its premise that changes in the production methods of subsistence resources in the Bronze Age have been continuous and gradual, this paper seeks to restore the production patterns of subsistence resources according to the variety of factors that may have influenced the early Bronze Age production method. With diverse cultural patterns and ecological spaces of the early Bronze Age being confirmed, the work of restoring the production methods of subsistence resources in a specific period is difficult to achieve with one or two stand-alone analyses. A more appropriate method would involve separating a number of different aspects related to the production of subsistence resources, analyzing and interpreting each, and in the final stage, synthesizing the analyses. The specific research method employed in this paper checked for compositional differences in stone production tools, functionally categorized according to a variety of factors that have a close relationship with the production of subsistence resources: cultural-environmental factors and cultural patterns, geographical and topographical factors, soil productivity, and size of settlement. The results of the analysis are as follows: for the early Bronze Age production pattern of subsistence resources in the Seoul and Gyeonggi regions, while no substantive differences were observed with respect to cultural type, geographical and topographical location, the results show statistically significant differences in the composition of production tools according to settlement size and soil productivity. Also, with an increasing ratio of settlement size and total production soil, increases in hunting and armoring tools, woodworking tools, and harvesting tools were observed; on the other hand, when it came to the ratio of fishing tools, the opposite relationship was observed. While a correlation between settlement size or crop cultivation productivity and dependence on hunting or farming was expected, the results of the regression analysis show that settlement size and soil productivity ratios do not have mutually significant relationships. The results thus illustrate that patterns of production differ according to a variety of factors, and no single factor is decisive in the adoption of subsistence resource production methods by a specific settlement. Therefore, the paper emphasizes the need to investigate the production patterns of subsistence resources according to the variety of cultural and environmental factors that make up settlements in early Bronze Age society.

Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery (위성영상의 방사적 특성을 고려한 구름 탐지 방법 개발)

  • Won-Woo Seo;Hongki Kang;Wansang Yoon;Pyung-Chae Lim;Sooahm Rhee;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1211-1224
    • /
    • 2023
  • Clouds cause many difficult problems in observing land surface phenomena using optical satellites, such as national land observation, disaster response, and change detection. In addition, the presence of clouds affects not only the image processing stage but also the final data quality, so it is necessary to identify and remove them. Therefore, in this study, we developed a new cloud detection technique that automatically performs a series of processes to search and extract the pixels closest to the spectral pattern of clouds in satellite images, select the optimal threshold, and produce a cloud mask based on the threshold. The cloud detection technique largely consists of three steps. In the first step, the process of converting the Digital Number (DN) unit image into top-of-atmosphere reflectance units was performed. In the second step, preprocessing such as Hue-Value-Saturation (HSV) transformation, triangle thresholding, and maximum likelihood classification was applied using the top of the atmosphere reflectance image, and the threshold for generating the initial cloud mask was determined for each image. In the third post-processing step, the noise included in the initial cloud mask created was removed and the cloud boundaries and interior were improved. As experimental data for cloud detection, CAS500-1 L2G images acquired in the Korean Peninsula from April to November, which show the diversity of spatial and seasonal distribution of clouds, were used. To verify the performance of the proposed method, the results generated by a simple thresholding method were compared. As a result of the experiment, compared to the existing method, the proposed method was able to detect clouds more accurately by considering the radiometric characteristics of each image through the preprocessing process. In addition, the results showed that the influence of bright objects (panel roofs, concrete roads, sand, etc.) other than cloud objects was minimized. The proposed method showed more than 30% improved results(F1-score) compared to the existing method but showed limitations in certain images containing snow.

A Study on the Social Venture Startup Phenomenon Using the Grounded Theory Approach (근거이론 접근법을 이용한 소셜벤처 창업 현상에 관한 고찰)

  • Seol, Byung Moon;Kim, Young Lag
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.1
    • /
    • pp.67-83
    • /
    • 2023
  • The social venture start-up phenomenon is found from the perspectives of social enterprise and for-profit enterprise. This study aims to fundamentally explore the start-up phenomenon of social ventures from these two perspectives. Considering the lack of prior research that researched both social and commercial perspectives at the same time, this paper analyzed using grounded theory approach of Strauss & Corbin(1998), an inductive research method that analyzes based on prior research and interview data. In order to collect data for this study, eight corporate representatives currently operating social ventures were interviewed and data and phenomena were analyzed. This progressed to a theoretical saturation where no additional information was derived. The analysis results of this study using the grounded theory approach are as follows. As a result of open coding and axial coding, 147 concepts and 70 subcategories were derived, and 18 categories were derived through the final abstraction process. In the selective coding, 'expansion of social venture entry in the social domain' and 'expansion of social function of for-profit companies' were selected as key categories, and a story line was formed around this. In this study, we saw that it is necessary to conduct academic research and analysis on the competitive factors required for companies that pursue the values of two conflicting relationships, such as social ventures, to survive with competitiveness. In practice, concepts such as collaboration with for-profit companies, value combination, entrepreneurship competency and performance improvement, social value execution competency reinforcement, communication strategy, for-profit enterprise value investment, and entrepreneur management competency were derived. This study explains the social venture phenomenon for social enterprises, commercial enterprises, and entrepreneurs who want to enter the social venture field. It is expected to provide the implications necessary for successful social venture startups.

  • PDF

An Exploratory Study on the Success Factors of Silicon Valley Platform Business Ecosystem: Focusing on IPA Analysis and Qualitative Analysis (실리콘밸리 플랫폼 기업생태계의 성공요인에 관한 탐색적 연구: IPA 분석과 질적 분석을 중심으로)

  • Yeonsung, Jung;Seong Ho, Lee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.1
    • /
    • pp.203-223
    • /
    • 2023
  • Recently, the platform industry is rapidly growing in the global market, and competition is intensifying at the same time. Therefore, in order for domestic platform companies to have global competitiveness in the platform market, it is necessary to study the platform business ecosystem and success factors. However, most of the recent platform-related studies have been theoretical studies on the characteristics of platform business status analysis, platform economy, and indirect network externalities of platforms. Therefore, this study comprehensively analyzed the success factors of Silicon Valley's business ecosystem proposed in previous studies, and at the same time analyzed the success factors extracted from stakeholders in the actual Silicon Valley platform business ecosystem. And based on these factors, an IPA analysis was conducted as a way to propose a success plan to stakeholders in the platform business ecosystem. As a result of the analysis, among the success factors collected through previous studies, manpower, capital, and challenge culture were identified as factors that are relatively well maintained in both importance and satisfaction in Silicon Valley. In the end, it can be seen that the creation of an environment and culture in which Silicon Valley can use it to challenge itself based on excellent human resources and abundant capital contributes the most to the success of Silicon Valley's platform business. On the other hand, although it is of high importance to Silicon Valley's platform corporate ecosystem, the factors that show relatively low satisfaction among stakeholders are 'learning and benchmarking among active companies' and 'strong ties and cooperation between members', and it is analyzed that interest and effort are needed to strengthen these factors in the future. Finally, the systems and policies necessary for market autonomous competition, 'business support service industry', 'name value', and 'spin-off start-up' were important factors in literature research, but the importance and satisfaction of these factors were lowered due to changes in the times and environment. This study has academic implications in that it comprehensively analyzes the success factors of Silicon Valley's business ecosystem proposed in previous studies, and at the same time analyzes the success factors extracted from stakeholders in the actual Silicon Valley platform business ecosystem. In addition, there is another academic implications that importance and satisfaction were simultaneously examined through IPA analysis based on these various extracted factors. As for academic implications, it is meaningful in that it contributed to the formation of the domestic platform ecosystem by providing the government and companies with concrete information on the success factors of the platform business ecosystem and the theoretical grounds for the growth of domestic platform businesses.

  • PDF

Analysis of Perceptions of Student Start-up Policies in Science and Technology Colleges: Focusing on the KAIST case (과기특성화대학 학생창업정책에 대한 인식분석: KAIST 사례를 중심으로)

  • Tae-Uk Ahn;Chun-Ryol Ryu;Minjung Baek
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.2
    • /
    • pp.197-214
    • /
    • 2024
  • This study aimed to investigate students' perceptions at science and technology specialized universities towards entrepreneurship support policies and to derive policy improvement measures by applying a bottom-up approach to reflect the requirements of the policy beneficiaries, i.e., the students. Specifically, the research explored effective execution strategies for student entrepreneurship support policies through a survey and analysis of KAIST students. The findings revealed that KAIST students recognize the urgent need for improvement in sharing policy objectives with the student entrepreneurship field, reflecting the opinions of the campus entrepreneurship scene in policy formulation, and constructing an entrepreneurship-friendly academic system for nurturing student entrepreneurs. Additionally, there was a highlighted need for enhancement in the capacity of implementing agencies, as well as in marketing and market development capabilities, and organizational management and practical skills as entrepreneurs within the educational curriculum. Consequently, this study proposes the following improvement measures: First, it calls for enhanced transparency and accessibility of entrepreneurship support policies, ensuring students clearly understand policy objectives and can easily access information. Second, it advocates for student-centered policy development, where students' opinions are actively incorporated to devise customized policies that consider their needs and the actual entrepreneurship environment. Third, there is a demand for improving entrepreneurship-friendly academic systems, encouraging more active participation in entrepreneurship activities by adopting or refining academic policies that recognize entrepreneurship activities as credits or expand entrepreneurship-related courses. Based on these results, it is expected that this research will provide valuable foundational data to actively support student entrepreneurship in science and technology specialized universities, foster an entrepreneurial spirit, and contribute to the creation of an innovation-driven entrepreneurship ecosystem that contributes to technological innovation and social value creation.

  • PDF

Development of an evaluation tool for dietary guideline adherence in the elderly (노인의 식생활지침 실천 평가도구 개발)

  • Young-Suk Lim;Ji Soo Oh;Hye-Young Kim
    • Journal of Nutrition and Health
    • /
    • v.57 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • Purpose: This study aimed to develop a comprehensive tool for assessing dietary guideline adherence among older Korean adults, focusing on the domains of food and nutrient intake, eating habits, and dietary culture. Methods: Candidate items were selected through a literature search and expert advice. The degree of adherence to dietary guidelines was then evaluated through a face-to-face survey conducted on 800 elderly individuals across five nationwide regions. The items for dietary guideline adherence evaluation tool were selected through exploratory factor analysis of the candidate items in each of the three areas of the dietary guidelines, and construct validity was verified by performing confirmatory factor analysis. Using the path coefficient of the structural equation model, weights were assigned to each area and item to calculate the dietary guideline adherence score. A rating system for the evaluation tool was established based on national survey results. Results: A total of twenty-eight items were selected for evaluating dietary guideline adherence among the elderly. Thirteen items related to food intake, seven to eating habits, and eight to dietary culture. The average score for dietary guideline adherence was 56.9 points, with 49.8 points in the food intake area, 63.2 points in the eating habits area, and 58.6 points in the dietary culture area. Statistically significant correlations were found between dietary guideline adherence scores and food literacy (r = 0.679) and nutrition quotient scores (r = 0.750). Conclusion: The developed evaluation tool for dietary guideline adherence among Korean older adults can be used as a simple and effective instrument for comprehensively assessing their food and nutrient intake, dietary habits, and dietary culture.

Analysis of the linkage between the three categories of content system according to the 2022 revised mathematics curriculum and the lesson titles of mathematics textbooks for the first and second-grade elementary school (2022 개정 수학과 교육과정에 따른 내용 체계의 세 범주와 초등학교 1~2학년 수학 교과서 차시명의 연계성 분석)

  • Kim, Sung Joon;Kim, Eun kyung;Kwon, Mi sun
    • Communications of Mathematical Education
    • /
    • v.38 no.2
    • /
    • pp.167-186
    • /
    • 2024
  • Since the 5th mathematics curriculum, the goals of mathematics education have been presented in three categories: cognitive, process, and affective goals. In the 2022 revised mathematics curriculum, the content system was also presented as knowledge-understanding, process-skill, and value-attitude. Therefore, in order to present lesson goals to students, it is necessary to present all three aspects that are the goals of mathematics education. Currently, the lesson titles presented in mathematics textbooks are directly linked to lesson goals and are the first source of information for students during class. Accordingly, this study analyzed how the three categories of lesson titles and content system presented in the 2015 revised 1st and 2nd grade mathematics textbook are connected. As a result, most lesson titles presented two of the three categories, but the reflected elements showed a tendency to focus on the categories of knowledge-understanding and process-skill. Some cases of lesson titles reflected content elements of the value-attitude category, but this showed significant differences depending on the mathematics content area. Considering the goals of mathematics lessons, it will be necessary to look at ways to present lesson titles that reflect the content elements of the value-attitude categories and also explore ways to present them in a balanced way. In particular, considering the fact that students can accurately understand the goals of the knowledge-understanding categories even without presenting them, descriptions that specifically reflect the content elements of the process-skill and value-attitude categories seem necessary. Through this, we attempted to suggest the method of presenting the lesson titles needed when developing the 2022 revised mathematics textbook and help present effective lesson goals using this.

Smart Store in Smart City: The Development of Smart Trade Area Analysis System Based on Consumer Sentiments (Smart Store in Smart City: 소비자 감성기반 상권분석 시스템 개발)

  • Yoo, In-Jin;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.25-52
    • /
    • 2018
  • This study performs social network analysis based on consumer sentiment related to a location in Seoul using data reflecting consumers' web search activities and emotional evaluations associated with commerce. The study focuses on large commercial districts in Seoul. In addition, to consider their various aspects, social network indexes were combined with the trading area's public data to verify factors affecting the area's sales. According to R square's change, We can see that the model has a little high R square value even though it includes only the district's public data represented by static data. However, the present study confirmed that the R square of the model combined with the network index derived from the social network analysis was even improved much more. A regression analysis of the trading area's public data showed that the five factors of 'number of market district,' 'residential area per person,' 'satisfaction of residential environment,' 'rate of change of trade,' and 'survival rate over 3 years' among twenty two variables. The study confirmed a significant influence on the sales of the trading area. According to the results, 'residential area per person' has the highest standardized beta value. Therefore, 'residential area per person' has the strongest influence on commercial sales. In addition, 'residential area per person,' 'number of market district,' and 'survival rate over 3 years' were found to have positive effects on the sales of all trading area. Thus, as the number of market districts in the trading area increases, residential area per person increases, and as the survival rate over 3 years of each store in the trading area increases, sales increase. On the other hand, 'satisfaction of residential environment' and 'rate of change of trade' were found to have a negative effect on sales. In the case of 'satisfaction of residential environment,' sales increase when the satisfaction level is low. Therefore, as consumer dissatisfaction with the residential environment increases, sales increase. The 'rate of change of trade' shows that sales increase with the decreasing acceleration of transaction frequency. According to the social network analysis, of the 25 regional trading areas in Seoul, Yangcheon-gu has the highest degree of connection. In other words, it has common sentiments with many other trading areas. On the other hand, Nowon-gu and Jungrang-gu have the lowest degree of connection. In other words, they have relatively distinct sentiments from other trading areas. The social network indexes used in the combination model are 'density of ego network,' 'degree centrality,' 'closeness centrality,' 'betweenness centrality,' and 'eigenvector centrality.' The combined model analysis confirmed that the degree centrality and eigenvector centrality of the social network index have a significant influence on sales and the highest influence in the model. 'Degree centrality' has a negative effect on the sales of the districts. This implies that sales decrease when holding various sentiments of other trading area, which conflicts with general social myths. However, this result can be interpreted to mean that if a trading area has low 'degree centrality,' it delivers unique and special sentiments to consumers. The findings of this study can also be interpreted to mean that sales can be increased if the trading area increases consumer recognition by forming a unique sentiment and city atmosphere that distinguish it from other trading areas. On the other hand, 'eigenvector centrality' has the greatest effect on sales in the combined model. In addition, the results confirmed a positive effect on sales. This finding shows that sales increase when a trading area is connected to others with stronger centrality than when it has common sentiments with others. This study can be used as an empirical basis for establishing and implementing a city and trading area strategy plan considering consumers' desired sentiments. In addition, we expect to provide entrepreneurs and potential entrepreneurs entering the trading area with sentiments possessed by those in the trading area and directions into the trading area considering the district-sentiment structure.

Extension Method of Association Rules Using Social Network Analysis (사회연결망 분석을 활용한 연관규칙 확장기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.111-126
    • /
    • 2017
  • Recommender systems based on association rule mining significantly contribute to seller's sales by reducing consumers' time to search for products that they want. Recommendations based on the frequency of transactions such as orders can effectively screen out the products that are statistically marketable among multiple products. A product with a high possibility of sales, however, can be omitted from the recommendation if it records insufficient number of transactions at the beginning of the sale. Products missing from the associated recommendations may lose the chance of exposure to consumers, which leads to a decline in the number of transactions. In turn, diminished transactions may create a vicious circle of lost opportunity to be recommended. Thus, initial sales are likely to remain stagnant for a certain period of time. Products that are susceptible to fashion or seasonality, such as clothing, may be greatly affected. This study was aimed at expanding association rules to include into the list of recommendations those products whose initial trading frequency of transactions is low despite the possibility of high sales. The particular purpose is to predict the strength of the direct connection of two unconnected items through the properties of the paths located between them. An association between two items revealed in transactions can be interpreted as the interaction between them, which can be expressed as a link in a social network whose nodes are items. The first step calculates the centralities of the nodes in the middle of the paths that indirectly connect the two nodes without direct connection. The next step identifies the number of the paths and the shortest among them. These extracts are used as independent variables in the regression analysis to predict future connection strength between the nodes. The strength of the connection between the two nodes of the model, which is defined by the number of nodes between the two nodes, is measured after a certain period of time. The regression analysis results confirm that the number of paths between the two products, the distance of the shortest path, and the number of neighboring items connected to the products are significantly related to their potential strength. This study used actual order transaction data collected for three months from February to April in 2016 from an online commerce company. To reduce the complexity of analytics as the scale of the network grows, the analysis was performed only on miscellaneous goods. Two consecutively purchased items were chosen from each customer's transactions to obtain a pair of antecedent and consequent, which secures a link needed for constituting a social network. The direction of the link was determined in the order in which the goods were purchased. Except for the last ten days of the data collection period, the social network of associated items was built for the extraction of independent variables. The model predicts the number of links to be connected in the next ten days from the explanatory variables. Of the 5,711 previously unconnected links, 611 were newly connected for the last ten days. Through experiments, the proposed model demonstrated excellent predictions. Of the 571 links that the proposed model predicts, 269 were confirmed to have been connected. This is 4.4 times more than the average of 61, which can be found without any prediction model. This study is expected to be useful regarding industries whose new products launch quickly with short life cycles, since their exposure time is critical. Also, it can be used to detect diseases that are rarely found in the early stages of medical treatment because of the low incidence of outbreaks. Since the complexity of the social networking analysis is sensitive to the number of nodes and links that make up the network, this study was conducted in a particular category of miscellaneous goods. Future research should consider that this condition may limit the opportunity to detect unexpected associations between products belonging to different categories of classification.

Impact of Semantic Characteristics on Perceived Helpfulness of Online Reviews (온라인 상품평의 내용적 특성이 소비자의 인지된 유용성에 미치는 영향)

  • Park, Yoon-Joo;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.29-44
    • /
    • 2017
  • In Internet commerce, consumers are heavily influenced by product reviews written by other users who have already purchased the product. However, as the product reviews accumulate, it takes a lot of time and effort for consumers to individually check the massive number of product reviews. Moreover, product reviews that are written carelessly actually inconvenience consumers. Thus many online vendors provide mechanisms to identify reviews that customers perceive as most helpful (Cao et al. 2011; Mudambi and Schuff 2010). For example, some online retailers, such as Amazon.com and TripAdvisor, allow users to rate the helpfulness of each review, and use this feedback information to rank and re-order them. However, many reviews have only a few feedbacks or no feedback at all, thus making it hard to identify their helpfulness. Also, it takes time to accumulate feedbacks, thus the newly authored reviews do not have enough ones. For example, only 20% of the reviews in Amazon Review Dataset (Mcauley and Leskovec, 2013) have more than 5 reviews (Yan et al, 2014). The purpose of this study is to analyze the factors affecting the usefulness of online product reviews and to derive a forecasting model that selectively provides product reviews that can be helpful to consumers. In order to do this, we extracted the various linguistic, psychological, and perceptual elements included in product reviews by using text-mining techniques and identifying the determinants among these elements that affect the usability of product reviews. In particular, considering that the characteristics of the product reviews and determinants of usability for apparel products (which are experiential products) and electronic products (which are search goods) can differ, the characteristics of the product reviews were compared within each product group and the determinants were established for each. This study used 7,498 apparel product reviews and 106,962 electronic product reviews from Amazon.com. In order to understand a review text, we first extract linguistic and psychological characteristics from review texts such as a word count, the level of emotional tone and analytical thinking embedded in review text using widely adopted text analysis software LIWC (Linguistic Inquiry and Word Count). After then, we explore the descriptive statistics of review text for each category and statistically compare their differences using t-test. Lastly, we regression analysis using the data mining software RapidMiner to find out determinant factors. As a result of comparing and analyzing product review characteristics of electronic products and apparel products, it was found that reviewers used more words as well as longer sentences when writing product reviews for electronic products. As for the content characteristics of the product reviews, it was found that these reviews included many analytic words, carried more clout, and related to the cognitive processes (CogProc) more so than the apparel product reviews, in addition to including many words expressing negative emotions (NegEmo). On the other hand, the apparel product reviews included more personal, authentic, positive emotions (PosEmo) and perceptual processes (Percept) compared to the electronic product reviews. Next, we analyzed the determinants toward the usefulness of the product reviews between the two product groups. As a result, it was found that product reviews with high product ratings from reviewers in both product groups that were perceived as being useful contained a larger number of total words, many expressions involving perceptual processes, and fewer negative emotions. In addition, apparel product reviews with a large number of comparative expressions, a low expertise index, and concise content with fewer words in each sentence were perceived to be useful. In the case of electronic product reviews, those that were analytical with a high expertise index, along with containing many authentic expressions, cognitive processes, and positive emotions (PosEmo) were perceived to be useful. These findings are expected to help consumers effectively identify useful product reviews in the future.