• Title/Summary/Keyword: 정방형주

Search Result 28, Processing Time 0.03 seconds

Investigation of flowfield characteristics of a square prism having a front triangular prism by PIV (PIV에 의한 정면에 삼각주를 가진 정방형주 주위의 유동장 특성분석)

  • Ro, Ki-Deok;Kim, Jae-Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.205-209
    • /
    • 2016
  • The flowfield characteristics of a square prism having a small triangular prism at the upstream side were investigated by visualizing the flow field using PIV. The ratio of the width of the triangular prism to that of the square prism and the gap ratios between the square and triangular prisms were selected as the experimental parameters. The results are summarized as follows. The Strouhal number measured on the wake side of the square prism, which had the same characteristics as the drag reduction rate, increased, and then decreased with the gap ratio for the same width ratio. For a square prism having a small triangular prism, the stagnation regions were represented at the upstream and downstream sides of the square prism. The size of the stagnation region increased with the width ratio at the upstream side of the square prism, and decreased at the downstream side.

The Flow Control by a Vertical Splitter Plate for a Square Prism near a Wall (벽면 근처에 놓인 정방형주의 수직 분할판에 의한 유동 제어)

  • Ro, Ki-Deok;Cho, Ji-Ryong;Oh, Se-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.94-100
    • /
    • 2012
  • The passive control by vertical splitter plate of fluid force acting on a square prism near a plane wall was studied by measuring of fluid force on the prism and by visualization of the flow field using PIV. The hight of the splitter plate was 10% of the square width. The experimental parameters were the attaching position of vertical splitter plate and the space ratios G/B to the prism height. Time variation of vorticity was most remarkable at 3.0B(B: prism height) position toward wake direction from the center of the prism. The point of inflection of average lift coefficient and Strouhal number on the prism were represented at the space ratio G/B=0.4~0.6 for the prism having vertical splitter plate. The drag of the prism was reduced average 5.0% with the space ratios by attaching the vertical splitter plate at the upper and rear corner on the prism. In this case, the size of the separated region on the upside of the prism was smaller than that of prism having no the splitter plate.

Characteristics of Fluid Force Reduction for Two Different Square Prisms in a Tandem Arrangement (직렬배열에 놓인 크기가 다른 정방형주의 유체력 저감특성)

  • Ro, Ki Deok;Kang, Chang Whan;Park, Kwon Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.7
    • /
    • pp.435-443
    • /
    • 2017
  • The Characteristics of the flowfields of a square prism having a small square prism were investigated by measuring of lift and drag on the square prism and visualizing the flowfield using PIV. The experimental parameters were the width ratios(H/B=0.2~0.6) of small square prisms to the prism width and the gap ratios (G/B=0~3) between the prism and the small square prism. The drag reduction rate of the square prism initially increased and then decreased with the G/B ratio for the same H/B ratio, and increased with the H/B ratio for the same G/B ratio. The maximum drag reduction rate of 98.0% was observed at H/B=0.6 and G/B=1.0. The lift reduction rate of the square prism was not affected by the width and gap ratios; the total average value was approximately 66.5%. In case of a square prism having a small square prism, the stagnation regions were represented in the upstream and downstream sides of the square prism.

The Flow Control by a Horizontal Splitter Plate for a Square Prism near a Wall (벽면에 근처에 놓인 정방형주의 수평 분리판에 의한 유동 제어)

  • Ro, Ki-Deok;Lee, Sang-Jun;Lee, Gyeong-Yun;Jang, Jae-Dong;Jung, Yong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.625-631
    • /
    • 2011
  • The passive control of fluid force acting on a square prism near a plane wall was studied by attaching horizontal splitter plate on the corner of the prism. The width of the splitter plate was 10% of the square width. The experiments were performed by measuring of fluid force on the prism and by visualization of the flow field using PIV. The experimental parameters were the attaching position and the space ratios G/B between the prism and wall. The flow between the prism and wall was remarkable and Karman vortex in the wake of the prism was considerable in the space ratio over 0.4. The point of inflection of average lift coefficient and Strouhal number on the prism were represented at the space ratio G/B=0.4 for the prototype prism and G/B=0.6 for the prism having horizontal splitter plate. The drag of the prism was reduced average 4.5% with the space ratios by attaching the horizontal splitter plate at the rear and lower corner on the prism. In this case, the size of the separated region on the upside of the prism was smaller than that of prism without the splitter plate.

Characteristics of Fluid Force Reduction of a Square Prism With a Small Triangular Prism (작은 삼각주에 의한 정방형주의 유체력 저감특성)

  • Ro, Ki-Deok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.243-247
    • /
    • 2015
  • The characteristics of the fluid force reduction of a square prism having a small triangular prism at the upstream side was investigated by measuring of lift and drag on the square prism The experimental parameters were the width ratios (H/B=0.2~0.6) of triangular prisms to the prism width and the gap ratios (G/B=0~3) between the square prism and the triangular prism. The drag reduction rate of the square prism was increased and then decreased with G/B in case of the same H/B, and was increased with H/B in case of the same G/B. The maximum drag reduction rate was represented by 78.5% at H/B=0.6 and G/B=1.5. The lift reduction rate of the square prism was hardly not affected by the width and gaps ratios, the average value was about 52.4%.

Experiments of flowfield of a square prism having a front vertical plate (정면에 수직 평판을 가진 정방형주의 유동장 특성실험)

  • Ro, Ki-Deok;Jo, Dong-Bae;Yoon, Young-Jun;Park, Seo-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.900-908
    • /
    • 2014
  • The Characteristics of the flowfields of a square prism having a small vertical plate at the upstream side was investigated by measuring of fluid force on the square prism and by visualization of the flow fields using PIV. The experimental parameters were the width ratios(H/B=0.2~0.6) of vertical plates to the prism width and the gap ratios (G/B=0~3) between the prism and the vertical plate. The drag reduction rate of the square prism was increased with H/B in case of the same G/B, and was increased and then decreased with G/B in case of the same H/B. The lift reduction rate of the square prism was hardly not affected by the width and gaps ratios, the average value was about 48.1%. In case of a square prism having a small vertical plate, the stagnation regions were represented in the upstream and downstream sides of the square prism.

Characteristic calculations of flowfield around a square prism having a detached splitter plate using vortex method (와법을 이용한 분리된 분할판을 가진 정방형주의 유동장 특성계산)

  • Ro, Ki-Deok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.156-162
    • /
    • 2013
  • The characteristics of the unsteady flowfield of a square prism having a detached splitter plate at the wake side were investigated by advanced vortex method. The instantaneous and average velocity field and pressure field around a square prism without and having splitter plate were calculated by forcing the gap ratio having the maximum drag reduction rate, at Reynolds number $Re=1.0{\times}10^4$ and the width ratio H/B=1.0 of splitter to the prism width. The drag and lift coefficients on the square prism were also obtained. The calculated results agree with the measured drag coefficients and pressure distributions on the square prism. The vortices of the opposite direction at upside and down side of the splitter plate were generated by installing of the plate. And the drag on the square prism was decreased by increasing of the pressure of back face of the prism with the vortices.

Drag Reduction on a Square Prism Using a Detached Splitter Plate (분리된 분할판에 의한 정방형주의 항력감소)

  • Ro, Ki-Deok;Yoon, Seong-Min;Choi, Dong-Hyeon;Kim, Jae-Hyeon;Sim, Eun-Chong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.808-813
    • /
    • 2012
  • The Characteristics of the drag reduction of a square prism having a detached splitter plate at the wake side were investigated by measuring of lift and drag on the square prism. The experimental parameters were the width ratios(H/B=0.5~1.5) of splitters to the prism width and the gap ratios (G/B=0~2) between the prism and the splitter plate. As the results the amplitude of the lift on the square prism having a detached splitter plate was remarkably decreased by comparison with the prototypical square prism. The drag reduction rate of the square prism was increased with H/B in case of the same G/B, and was increased and decreased with G/B in case of the same H/B. The maximum drag reduction rate was represented by 24.2% at H/B=1.5 and G/B=0.5.

Characteristic analysis of flowfield around a square prism having a detached splitter plate using the PIV (PIV에 의한 분리된 분할판을 가진 정방형주 주위의 유동장 특성 분석)

  • Ro, Ki-Deok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.338-343
    • /
    • 2013
  • The Flowfield characteristics of a square prism having a detached splitter plate at the wake region were investigated by visualization of the flow field using PIV. The experimental parameters were the width ratios(H/B=0.5~1.5) of the splitter plate to the prism width and the gap ratios (G/B=0~2) between the prism and the splitter plate. As the results the Strouhal number measured at the wake region of the detached splitter plate was decreased with the width ratio and the gap ratio. The clockwise vortex at the upside of the splitter plate and counterclockwise vortex at the downside were represented, the size of these vortices were increased with the width of the splitter plate. The reverse flow was represented at the wake region of the square prism having a detached splitter plate, the size of this reverse flow was increased with the width of the splitter plate.

The Visualization of the Flowfield around Square Prism Having Fences Using the PIV (PIV를 이용한 펜스를 가진 정방형주 주위의 유동장 가시화)

  • Ro, Ki-Deok;Kim, Kwang-Seok;Oh, Se-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.94-99
    • /
    • 2008
  • The characteristics of the flowfield of a square prism having fences on the corner was investigated by the PIV. Strouhal numbers, velocity vectors and velocity profiles around the square prism were observed at various positions of the fences, and Reynolds number of $Re=0.6{\times}10^4{\sim}1.0{\times}10^4$. As the results in case of the prism having fences the Strouhal numbers were all smaller than in case of the prototype prism. In case of the prism having vertical fences on the front corners the concentrated intensity of the vorticity was the strongest and the size of separated shear layer was the largest. While in case of the prism having vertical fences on the rear corners the concentrated intensity of the vorticity was the weakest and the size of separated shear layer was the smallest. Also in this case, the flow separated in front corner was reattached around the rear corner and made circulation.