• Title/Summary/Keyword: 정밀제어

Search Result 3,281, Processing Time 0.032 seconds

Design and Implementation of Visitor Access Control System using Deep learning Face Recognition (딥러닝 얼굴인식 기술을 활용한 방문자 출입관리 시스템 설계와 구현)

  • Heo, Seok-Yeol;Kim, Kang Min;Lee, Wan-Jik
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.245-251
    • /
    • 2021
  • As the trend of steadily increasing the number of single or double household, there is a growing demand to see who is the outsider visiting the home during the free time. Various models of face recognition technology have been proposed through many studies, and Harr Cascade of OpenCV and Hog of Dlib are representative open source models. Among the two modes, Dlib's Hog has strengths in front of the indoor and at a limited distance, which is the focus of this study. In this paper, a face recognition visitor access system based on Dlib was designed and implemented. The whole system consists of a front module, a server module, and a mobile module, and in detail, it includes face registration, face recognition, real-time visitor verification and remote control, and video storage functions. The Precision, Specificity, and Accuracy according to the change of the distance threshold value were calculated using the error matrix with the photos published on the Internet, and compared with the results of previous studies. As a result of the experiment, it was confirmed that the implemented system was operating normally, and the result was confirmed to be similar to that reported by Dlib.

High Quality Video Streaming System in Ultra-Low Latency over 5G-MEC (5G-MEC 기반 초저지연 고화질 영상 전송 시스템)

  • Kim, Jeongseok;Lee, Jaeho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.2
    • /
    • pp.29-38
    • /
    • 2021
  • The Internet including mobile networks is developing to overcoming the limitation of physical distance and providing or acquiring information from remote locations. However, the systems that use video as primary information require higher bandwidth for recognizing the situation in remote places more accurately through high-quality video as well as lower latency for faster interaction between devices and users. The emergence of the 5th generation mobile network provides features such as high bandwidth and precise location recognition that were not experienced in previous-generation technologies. In addition, the Mobile Edge Computing that minimizes network latency in the mobile network requires a change in the traditional system architecture that was composed of the existing smart device and high availability server system. However, even with 5G and MEC, since there is a limit to overcome the mobile network state fluctuations only by enhancing the network infrastructure, this study proposes a high-definition video streaming system in ultra-low latency based on the SRT protocol that provides Forward Error Correction and Fast Retransmission. The proposed system shows how to deploy software components that are developed in consideration of the nature of 5G and MEC to achieve sub-1 second latency for 4K real-time video streaming. In the last of this paper, we analyze the most significant factor in the entire video transmission process to achieve the lowest possible latency.

A Study on Time Synchronization Method for Analyzing the Network Performance of Remote Control System (원격운용 시스템의 네트워크 성능분석을 위한 시간동기화 방안에 관한 연구)

  • Yang, DongWon;Kim, Namgon;Kim, Dojong
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.141-149
    • /
    • 2022
  • With the development of artificial intelligence and unmanned technologies, the remote surveillance/autonomous driving systems have been actively researched. For an effective performance analysis of the developed remote control system, it is important to record the data of it in real time. In addition, in order to analyze the performance between the control system and the remote system, the recorded data from them should be synchronized with time. In this paper we proposed a novel time synchronization method for the remote control system. The proposed remote control system satisfies the time difference of the recorded data within 1 ms, and we can reduce the time difference by using a CPU shielding and affinity setting. The performance of the proposed method was proved through various network data storage experiments. And the experiments confirmed that the proposed method can be applied to recording devices of unmanned ground vehicles and control vehicles. The proposed method will be used as a method for analyzing network data of UGV-R (Unmanned Ground Vehicle - Reconnaissance).

433 MHz Radio Frequency and 2G based Smart Irrigation Monitoring System (433 MHz 무선주파수와 2G 통신 기반의 스마트 관개 모니터링 시스템)

  • Manongi, Frank Andrew;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.136-145
    • /
    • 2020
  • Agriculture is the backbone of the economy of most developing countries. In these countries, agriculture or farming is mostly done manually with little integration of machinery, intelligent systems and data monitoring. Irrigation is an essential process that directly influences crop production. The fluctuating amount of rainfall per year has led to the adoption of irrigation systems in most farms. The absence of smart sensors, monitoring methods and control, has led to low harvests and draining water sources. In this research paper, we introduce a 433 MHz Radio Frequency and 2G based Smart Irrigation Meter System and a water prepayment system for rural areas of Tanzania with no reliable internet coverage. Specifically, Ngurudoto area in Arusha region where it will be used as a case study for data collection. The proposed system is hybrid, comprising of both weather data (evapotranspiration) and soil moisture data. The architecture of the system has on-site weather measurement controllers, soil moisture sensors buried on the ground, water flow sensors, a solenoid valve, and a prepayment system. To achieve high precision in linear and nonlinear regression and to improve classification and prediction, this work cascades a Dynamic Regression Algorithm and Naïve Bayes algorithm.

A Review of the Deterioration and Damage of the Top Flange of the Highway PSC Box Girder Bridge based on the Condition Assessment Results (상태평가 결과 기반 고속도로 PSC Box 거더교 상부플랜지 열화·손상 실태 고찰)

  • Ku, Young-Ho;Han, Sang-Mook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.23-32
    • /
    • 2022
  • Although PSCB girder bridges account for 4% of the bridges in use on highways, they do not account for much, but 98% of PSCB girder bridges are 1st type and 2nd type of bridge. Also, the total length of the PSCB girder bridge is 16% (192km) of the total length of the highway bridge. Thus, the PSCB girder bridge can be one of the bridge types where maintenance is important. In order to analyze the damage types of PSCB girder bridges, a detailed analysis was conducted by selecting 62 places (477 spans) precision safety diagnosis reports considering ratio of the construction method and snow removal environment exposure class. Analysis of report and a field investigation was conducted, and as a result, most of the causes of deterioration damage were caused by rainwater (salt water) flowing into the bridge pavement soaking in between the top flange and the interface. After concrete slab deteriorate occurred then bridge pavement cracking and breaking increased and exfoliation of concrete occurred by corrosion and expansion of the reinforcing bars occurred. In addition, the cause of cracks in the longitudinal direction on the bottom of the top flange is considered to be cracks caused by restrained drying shrinkage. In conclusion, for reasonable maintenance considering the characteristics of PSCB girder bridges, it should be suggested in the design aspect that restrained drying shrinkage crack on top flange. Also, it is believed that differentiated maintenance method should be proposed according to snow removal environment exposure class.

Introduction to Soil-grondwater monitoring technology for CPS (Cyber Physical System) and DT (Digital Twin) connection (CPS 및 DT 연계를 위한 토양-지하수 관측기술 소개)

  • Byung-Woo Kim;Doo-Houng Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.14-14
    • /
    • 2023
  • 산업발전에 따른 인구증가, 기후위기에 따른 가뭄 및 물 부족심화, 그리고 수질오염 등은 2015년 제79차 UN총회의 물 안보측면에서 국제사회의 물 분야 위기관리를 위해 2030년을 지속가능한 발전 목표(Sustainable Development Goals)로 하였다. 또한, 현재 물 산업은 빠르게 성장하고 있으며, 2016년 세계경제포럼(World Economic Forum) 의장 클라우스 슈밥(Klaus Schwab)부터 주창된 제4차 산업혁명로 인해 현재 물 산업의 패러다임 또한 급속히 변화하고 있다. 이는 컴퓨터를 기반으로 하는 CPS(Cyber Physical System) 및 DT(Digital Twin) 연계 분석방식의 혁신을 일컫는다. 2002년경에 DT의 기본개념이 제시되었고, 2006년경에는 Embedded System에서의 DT와 같은 개념으로 CPS의 용어가 등장했다. DT는 현실세계에 존재하는 사물, 시스템, 환경 등을 S/W시스템의 가상공간에 동일하게 모사(Virtualization) 및 모의(Simulation)할 수 있도록 하고, 모의결과를 가상시스템으로 현실세계를 최적화 체계 구현 기술을 말한다. DT의 6가지 기능은 ① 실제 데이터(Live Data), ② 모사, ③ 분석정보(Analytics), ④ 모의, ⑤ 예측(Predictions), ⑥ 자동화(Automation) 이다. 또한, CPS는 대규모 센서 및 액추에이터(Actuator)를 가지는 물리적 요소와 이를 실시간으로 제어하는 컴퓨팅 요소가 결합된 복합시스템을 말한다. CPS는 물리세계에서 발생하는 변화를 감지할 수 있는 다양한 센서를 통해 환경인지 기능을 수행한다. 센서로부터 수집된 정보와 물리세계를 재현 및 투영하는 고도화된 시스템 모델들을 기반으로 사이버 물리공간을 인지·분석·예측할 수 있다. CPS의 6가지 구성요소는 ① 상호 운용성(Interoperability), ② 가상화(Virtualization), ③ 분산화(Decentralization), ④ 실시간(Real-time Capability), ⑤ 서비스 오리엔테이션(Service Orientation), ⑥ 모듈화(Modularity)이다. DT와 CPS는 본질적으로 같은 목적, 내용, 그리고 결과를 만들어내고자 하는 같은 종류의 기술이라고 할 수 있다. CPS 및 DT는 물리세계에서 발생하는 변화를 감지할 수 있으며, 토양-지하수 센서를 포함한 관측기술을 통해 환경인지 기능을 수행한다. 지하수 관측기술로부터 수집된 정보와 물리세계를 재현 및 투영하는 고도화된 시스템 모델들을 기반으로 사이버 물리공간 및 디지털 트윈 공간을 인지·분석·예측할 수 있다. CPS 및 DT의 기본 요소들을 실현시키는 것은 양질의 데이터를 모니터링할 수 있는 정확하고 정밀한 1차원 연직 프로파일링 관측기술이며, 이를 토대로 한 수자원 관련 빅데이터의 증가, 빅데이터의 저장과 분석을 가능하게 하는 플랫폼의 개발이다. 본 연구는 CPS 및 DT 기반 토양수분-지하수 관측기술을 이용한 지표수-지하수 연계, 지하수 순환 및 관리, 정수 운영 및 진단프로그램 개발을 위한 토양수분-지하수 관측장치를 지하수 플랫폼 동시성과 디지털 트윈 시뮬레이터 시스템 개발 방향으로 제시하고자 한다.

  • PDF

Investigating the Effect of Photoinitiator Types and Contents on the Photocuring Behavior of Photocurable Inks and Their Applications for Etching Resist Inks (광개시제 종류 및 함량에 따른 광경화형 잉크의 광경화 특성과 인쇄회로기판용 에칭 레지스트 소재로의 적용성 연구)

  • Bo-Young Kim;Subin Jo;Gwajeong Jeong;Seong Dae Park;Jihoon Kim;Eui-Keun Choi;Myong Jae Yoo;Hyunseung Yang
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.444-449
    • /
    • 2023
  • As electronic devices become smaller and more integrated, the demand for manufacturing thin, flexible printed circuit boards (FPCBs) has increased. Although FPCBs are conventionally manufactured by a photolithography method using dry film resist, this process is complicated, and the mask is specifically designed to obtain the precision of the desired circuit line width. In this regard, manufacturing FPCBs with fine patterns through the direct printing method of photocurable inks has gained growing attention. Since the manufacturing process of FPCBs is based on the direct printing method that includes etching and stripping processes utilizing acid and basic chemicals, controlling the adhesion strength, the etching resistance, and the strippability of photocured inks has drawn a lot of attention for the fabrication of fine patterns through photocurable inks. In this study, acrylic ink with various types and contents of the photoinitiator was prepared, and the curing behavior was analyzed. Also, the adhesion strength, etching resistance, and strippability were analyzed to evaluate the applicability of developed photocurable etching resist inks.

Room Temperature Imprint Lithography for Surface Patterning of Al Foils and Plates (알루미늄 박 및 플레이트 표면 미세 패터닝을 위한 상온 임프린팅 기술)

  • Tae Wan Park;Seungmin Kim;Eun Bin Kang;Woon Ik Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.65-70
    • /
    • 2023
  • Nanoimprint lithography (NIL) has attracted much attention due to its process simplicity, excellent patternability, process scalability, high productivity, and low processing cost for pattern formation. However, the pattern size that can be implemented on metal materials through conventional NIL technologies is generally limited to the micro level. Here, we introduce a novel hard imprint lithography method, extreme-pressure imprint lithography (EPIL), for the direct nano-to-microscale pattern formation on the surfaces of metal substrates with various thicknesses. The EPIL process allows reliable nanoscopic patterning on diverse surfaces, such as polymers, metals, and ceramics, without the use of ultraviolet (UV) light, laser, imprint resist, or electrical pulse. Micro/nano molds fabricated by laser micromachining and conventional photolithography are utilized for the nanopatterning of Al substrates through precise plastic deformation by applying high load or pressure at room temperature. We demonstrate micro/nanoscale pattern formation on the Al substrates with various thicknesses from 20 ㎛ to 100 mm. Moreover, we also show how to obtain controllable pattern structures on the surface of metallic materials via the versatile EPIL technique. We expect that this imprint lithography-based new approach will be applied to other emerging nanofabrication methods for various device applications with complex geometries on the surface of metallic materials.

Evaluation and Weathering Depth Modeling of Thermally Altered Pelitic Rocks based on Chemical Weathering and Variations: Ulju Cheonjeon-ri Petroglyph (화학적 풍화작용과 조성변화에 따른 열변질 이질암의 풍화심도 모델링 및 평가: 울주 천전리 각석)

  • LEE Chan Hee;CHUN Yu Gun
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.160-189
    • /
    • 2023
  • The Cheonjeon-ri petroglyph is inscribed with shale formation belonging to the Daegu Formation of the Gyeongsang Supergroup in the Cretaceous of the Mesozoic Era. This rock undergoes thermal alteration to become hornfels, and has a high hardness and dense texture. Rock-forming minerals have almost the same composition as quartz, alkali felspar, plagioclase, calcite, mica, chlorite and opaque minerals, but calcite is rarely detected in the weathered zone. The petroglyph forms a weathered zone with a certain depth, and there is a difference in mineral and chemical composition between weathered and unweathered zones, respectively. The CaO contents of the weathered zone were reduced by more than 90% compared to that of the unweathered zone, because calcite reacted with water and dissolved. As a result of calculating the surface weathering depth for the petroglyph with the transmission characteristics of X-rays, depth of the parts in falling off and exfoliation showed a depth of about 0.5 to 1 mm, but the weathering depth in most areas was calculated to be about 3 to 4 mm. This can be proved by the contents and changes of Ca and Sr. The surface discolorations of the petroglyph are distributed with different color density, and the yellowish brown discoloration is alternated with a thin biofilm layer, showing a coverage of 79.6%. Therefore, periodic preservation managements and preventive conservation monitoring that can effectively control the physicochemical and biological damages of the Cheonjeonri petroglyph will be necessary.

Scale-up Fabrication of Flat Sheet Membrane by Using a Roll-to-Roll Process (롤투롤 공정을 활용한 평판형 분리막의 대면적 제조 연구)

  • Dong Hyeok Baek;Youngmin Yoo;In-Chul Kim;You-In Park;Seung-Eun Nam;Young Hoon Cho
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.79-86
    • /
    • 2024
  • The flat sheet membrane, one of the representative forms of polymeric membranes, is widely used from material research in laboratories to commercial membrane production due to its ease of fabrication. Porous polymeric flat sheet membranes used in microfiltration and ultrafiltration are mainly fabricated through phase separation processes, utilizing non-solvent-induced and vapor-induced phase separation methods. However, due to the nature of phase separation processes, variations between samples can easily occur depending on the surrounding environment and the experimenter, making it difficult to ensure reproducibility. Therefore, for scaling up and ensuring reproducibility of developed membrane fabrication technologies, there is a need for a controlled environment continuous large-area production device, such as a roll-to-roll manufacturing system. This research compared the changes in membrane characteristics due to differences in manufacturing environments when scaling up laboratory-scale fabrication technologies to roll-to-roll processes using knife and slot die coaters. By optimizing the continuous manufacturing process factors, uniformity of the membrane was ensured during large-area production.