• Title/Summary/Keyword: 정밀위성궤도

Search Result 205, Processing Time 0.024 seconds

Epipolar Resampling Module for CAS500 Satellites 3D Stereo Data Processing (국토위성 3차원 데이터 생성을 위한 입체 기하 영상 생성 모듈 제작 및 테스트)

  • Oh, Jaehong;Lee, Changno
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.939-948
    • /
    • 2020
  • CAS500-1 and CAS500-2 are high-resolution Earth-observing satellites being developed and scheduled to launch for land monitoring of Korea. The satellite information will be used for land usage analysis, change detection, 3D topological monitoring, and so on. Satellite image data of region of interests must be acquired in the stereo mode from different positions for 3D information generation. Accurate 3D processing and 3D display of stereo satellite data requires the epipolar image resampling process considering the pushbroom sensor and the satellite trajectory. This study developed an epipolar image resampling module for CAS-500 stereo data processing and verified its accuracy performance by testing along-track, across-track, and heterogeneous stereo data.

SPECTROSCOPIC OBSERVATIONS OF GEO-STAT10NARY SATELLITES OVER THE KOREAN PENINSULA (한반도 주변상공의 정지궤도 인공위성 분광관측1)

  • 이동규;김상준;한원용;박준성;민상웅
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.101-108
    • /
    • 2001
  • Low resolution spectroscopic observations of leo-stationary satellites over the Korean peninsula have been carried out at the KyungHee Optical Satellite Observing Facility (KOSOF) with a 40cm telescope. We have observed 9 telecommunication satellites and 1 weather satellite of 6 countries. The obtained spectral data showed that satellites could be classified and grouped with similar basic spectral feature. We divided the 10 satellites into 4 groups based on spectral slop and reflectance. It is suggested that the material types of the satellites can be determined through spectral comparisons with the ground laboratory data. We will continuously observe additional geo-stationary satellites for the accurate classification of spectral features.

  • PDF

Analysis of GPS Data between Precise Ephemeris and Broadcast Ephemeris Using GAMIT and LGO (GAMIT과 LGO를 사용한 방송궤도력과 정밀궤도력에 의한 GPS 자료 처리결과의 비교.분석)

  • Joo, Hyun-Seung;Han, Choon-Deuk;Yeu, Yeon;Choi, Seung-Pil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.761-768
    • /
    • 2009
  • GPS data acquired at CORS are widely and rapidly used in many application such as information technology industries. In acquisition of GPS data the establishment of standards of reliability and tolerance error range is necessary. This standards is regarded to contain the requirements of selection of using softwares, precise and broadcast ephemeris, duration of data acquisition, and etc. This study focused to present above standards of tolerance error. In long baseline GPS observation network the RMSE analysed in this study resulted little change when data acquired in 6-hour duration, but the less observation duration resulted less accuracy. Especially in 3-hour observation the accuracy of GPS data decreased rapidly. After analyses of data accuracy in the same observation condition using different computer program between academic and commercial purpose software, the RMSE of academic software resulted less than 1cm compared to 3 to 10cm from commercial software. RMSE analysis between precise ephemeris and broadcast ephemeris resulted similar quantity. Therefore this study regarded to present the reliable establishment of standards of error which can be used in required accuracy in GPS data observation.

Systemic Ground-Segment Development for the Geostationary Ocean Color Imager II, GOCI-II (정지궤도 해양관측위성 지상시스템 개발)

  • Han, Hee-Jeong;Yang, Hyun;Heo, Jae-Moo;Park, Young-Je
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.3
    • /
    • pp.171-176
    • /
    • 2017
  • Recently, several information-technology research projects such as those for high-performance computing, the cloud service, and the DevOps methodology have been advanced to develop the efficiency of satellite data-processing systems. In March 2019, the Geostationary Ocean Color Imager II (GOCI-II) will be launched for its predictive capability regarding marine disasters and the management of the fishery environment; moreover, the GOCI-II Ground Segment (G2GS) system for data acquisition/processing/storing/distribution is being designed at the Korea Ocean Satellite Center (KOSC). The G2GS is composed of the following six functional subsystems: data-acquisition subsystem (DAS), data-correction subsystem (DCS), precision-correction subsystem (PCS), ocean data-processing subsystem (ODPS), data-management subsystem (DMS), and operation and quality management subsystem (OQMS). The G2GS will enable the real-time support of the GOCI-II ocean-color data for government-related organizations and public users.

Investigation of Sensor Models for Precise Geolocation of GOES-9 Images (GOES-9 영상의 정밀기하보정을 위한 여러 센서모델 분석)

  • Hur, Dong-Seok;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.285-294
    • /
    • 2006
  • A numerical formula that presents relationship between a point of a satellite image and its ground position is called a sensor model. For precise geolocation of satellite images, we need an error-free sensor model. However, the sensor model based on GOES ephemeris data has some error, in particular after Image Motion Compensation (IMC) mechanism has been turned off. To solve this problem, we investigated three sensor models: collinearity model, direct linear transform (DLT) model and orbit-based model. We applied matching between GOES images and global coastline database and used successful results as control points. With control points we improved the initial image geolocation accuracy using the three models. We compared results from three sensor models. As a result, we showed that the orbit-based model is a suitable sensor model for precise geolocation of GOES-9 Images.

Performance Analysis of the KOMPSAT-1 GPS Receiver (아리랑 1호 탑재 GPS 수신기의 궤도 상 성능 분석)

  • Kim, Hae-Dong;Lee, Jin-Ho;Kim, Eun-Kyou;Choi, Hae-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.92-97
    • /
    • 2005
  • In this paper, the performance of the KOMPSAT-1 GPS receiver on orbit was analyzed. OD (Orbit Determination) accuracy using GPS navigation solutions and GPS visibility were investigated with respect to the configuration of the GPS receiver. Indeed, the problem such as ‘3D Fix Loss’ observed during the mission was presented. As a result, the OD accuracy of ‘Best-of-4’ Position Fix Algorithm with 0 degree of mask angle was slightly better than that of ‘N-in-View’ Position Fix Algorithm. On the other hand, the GPS visibility under ‘N-in-View’ Algorithm is better than that of ‘Best-of-4’ Algorithm. The occurrence of temporal 3D Fix Loss is reduced when the ‘N-in-View’ Position Fix Algorithm was selected.

Requirement analysis of a low budget dedicated monitoring telescope to support the Geosynchronous Earth Orbit region optical surveillance (지구 정지궤도 영역 상시관측 지원을 위한 저예산 전용 광학관측 시스템 요구사항 분석)

  • Jo, Jung Hyun;Park, Jang-Hyun;Cho, Sungki;Yim, Hong-Suh;Choi, Jin;Park, Maru
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.128-135
    • /
    • 2015
  • Currently we have an electro-optical space object monitoring system (OWL-Net) developed by the Korea Astronomy and Space Science Institute as the only ground-based on orbit space object tracking capability in Korea. This system can produce the ephemeris of domestic satellites and survey the geosynchronous orbit region. As the number of observation objects increases and the operation condition get worse, a low budget dedicated monitoring telescope capable of full time geosynchronous orbit region survey can support an effect operation of the OWL-Net. In this study, we analyze the requirements of a low-budget dedicated optical monitoring system for geosynchronous orbit region without the degradation of observation quality to increase the risk of corrupted ephemeris.