• Title/Summary/Keyword: 정렬 정밀도

Search Result 256, Processing Time 0.028 seconds

이중 서보 메커니즘을 이용한 초정밀 스테이지에 대한 연구

  • 한창수;김승수;나경환;최현석
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.05a
    • /
    • pp.268-271
    • /
    • 2004
  • 반도체 가공공정에서 웨이퍼의 정렬이나 각종 초정밀 가공에서 가공물의 각도를 미체 조정하기 위한 초정밀 메커니즘을 제안하였다. 일반적으로 각도를 결정하는 메커니즘은 기어를 이용한다. 기어를 이용할 경우 회전 분해능을 높일 수 있으나 기어의 백래쉬에 의한 오차가 있어 보다 높은 정밀도를 구현하기가 어렵다. 본 논문에서는 직접구동(direct drive) 방식과 이중서보(dual servo) 방식을 이용하여 기어를 사용하지 않고 회전 스테이지를 구현하였다.

  • PDF

Optical Assembly and Fabrication of a Micro-electron Column (마이크로 전자렌즈의 광학적 정렬과 조립)

  • Park, Jong-Seon;Jang, Won-Kweon;Kim, Ho-Seob
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.4
    • /
    • pp.354-358
    • /
    • 2006
  • A silicon lens and an insulator of pyrex, components of a micro-electron column, should be assembled by aligning and stacking simultaneously. An optical alignment of a diffraction beam and a laser welding were employed for the assembly of a source lens and an Einzel lens with precision within $\pm$4% for the maximum aperture size. The experimental condition for optical alignment and laser welding are explained. Anodic bonding was used to assist in stacking lenses. A micro-electron column of smaller apertures assembled with precise alignment and fabrication was tested with a current image of a Cu grid of 9$\mu$m in linewidth, and showed a higher resolution in acceleration mode.

Design of null lens for Alignment of the Unstable Laser Resonator (불안정형 레이저 공진기 정렬을 위한 null 렌즈 설계)

  • Kim, Hyun-Sook;Kim, Yeon-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.2
    • /
    • pp.186-190
    • /
    • 2006
  • The use of null optics is proposed as a new concept for the precise alignment of a confocal unstable resonator. The characteristics of the proposed null optics are investigated and analysed with the designed null lens for a real confocal unstable resonator of which the length is 3.5 m. As a result of the analysis, the pupil map data are shown about the despace error of 1.0 mm and tilt error of 1.0 mrad.

A Diagnosis system of misalignments of linear motion robots using transfer learning (전이 학습을 이용한 선형 이송 로봇의 정렬 이상진단 시스템)

  • Su-bin Hong;Young-dae Lee;Arum Park;Chanwoo Moon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.801-807
    • /
    • 2024
  • Linear motion robots are devices that perform functions such as transferring parts or positioning devices, and require high precision. In companies that develop linear robot application systems, human workers are in charge of quality control and fault diagnosis of linear robots, and the result and accuracy of a fault diagnosis varies depending on the skill level of the person in charge. Recently, there have been many attempts to utilize artificial intelligence to diagnose faults in industrial devices. In this paper, we present a system that automatically diagnoses linear rail and ball screw misalignment of a linear robot using transfer learning. In industrial systems, it is difficult to obtain a lot of learning data, and this causes a data imbalance problem. In this case, a transfer learning model configured by retraining an established model is widely used. The information obtained by using an acceleration sensor and torque sensor was used, and its usefulness was evaluated for each case. After converting the signal obtained from the sensor into a spectrogram image, the type of abnormality was diagnosed using an image recognition artificial intelligence classifier. It is expected that the proposed method can be used not only for linear robots but also for diagnosing other industrial robots.