• 제목/요약/키워드: 정극활물질

검색결과 21건 처리시간 0.028초

도전재 종류에 따른 리튬폴리머전지용 $LiFePO_4$ 정극활물질의 용량특성의 변화 (A Study on the Capacity Characteristic of $LiFePO_4$ Cathode for Lithium Polymer Batteries according to kinds of the conductive materials)

  • ;;;박경희;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.316-316
    • /
    • 2007
  • 리튬폴리머 전지용 정극활물질인 $LiFePO_4$를 수열법으로 합성하였다. 제조한 정극활물질 $LiFePO_4$는 X-ray 회절분석을 통하여 olivine 구조임을 확인하였다. 전극 제조 시 첨가된 도전재의 종류에 따른 전기화학적 특성변화를 알기 위하여, Acetylene Black, Super-Black, Multi-Walled Carbon Nanotube(MWCNT), SP270을 도전재로 제조된 정극활물질과 PVDF를 결합제로 사용하였다. 셀은 제조된 정극과 고체전해질 $25PVDFLiCIO_4EC_{10}PC_{10}$를 사용하고, 부극은 금속리튬으로 coin 타입의 cell을 조립하여 충방전을 진행하였다. 충방전 진행결과, Multi-Walled Carbon Nanotube(MWCNT)를 도전재로 사용하였을 경우, 초기 방전용량은 94mAh/g, 100cycle 후에는 약 93mAh/g인 기타 도전재를 사용하였을 때보다 안정하고 높은 방전용량을 나타내었다. 이때의 충방전 전류밀도는 0.1mAh/g이고 전압범위 는 2.5~4.3V이었다.

  • PDF

리튬이온 배터리용 정극재료(正極材料)의 기술동향(技術動向) (Technology Trends of Cathode Active Materials for Lithium Ion Battery)

  • 황용길;길상철;김종헌
    • 자원리싸이클링
    • /
    • 제21권5호
    • /
    • pp.79-87
    • /
    • 2012
  • 리튬이온전지의 대형화와 범용화에 따라 경제성과 안정성 관점에서 정극재료의 개발은 중요한 과제로 대두되고 있다. 18650 원통형 전지의 에너지 밀도는 발매 초기인 1991년 230Wh/l에서 2005년 2배 이상의 500Wh/l로 증가하였으며, 제품 대부분의 에너지용량은 450~500 Wh/l, 150~190Wh/kg이고 안전성, 제조비 절감 및 장 수명을 중점적으로 개발하고 있다. $LiCoO_2$ 정극활물질 중의 Co가 고가이므로 Co 사용량을 줄이면서 에너지 용량을 향상시키기 위하여 $LiMn_2O_4$, $LiCo_{1/3}N_{i1/3}Mn_{1/3}O_2$, $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$, $LiFePO_4$-C복합체 (167 mA/g)등이 개발되고 있다. 전동자전거용 전지는 출력밀도 500 Wh/kg, 전동공구용 1,500Wh/kg, EV나 PHEV용으로는 4,000~5,000Wh/kg의 대용량 출력밀도를 요구하고 있으므로 배터리 소재의 성능을 향상시키려고 많은 연구가 진행되고 있다. 최근 Graphene-sulfur 복합체정극활물질 600 Ah/kg, 2차전지용 분자클러스터(molecular cluster) 320 Ah/kg 등의 새로운 정극활물질이 연구 개발되고 있으므로 실용화가 기대된다.

리튬고분자 전지의 정극활물질에 관한 전기적 특성 (The Electrical Properties of Cathode Active Materials in Li Polymer Battery System)

  • 나재진;박수길;임기조;이홍기;이주성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 춘계학술대회 논문집
    • /
    • pp.273-276
    • /
    • 1996
  • Polyphenylenediamine(PPD) film was prepared with dimethylsulfoxide after the synthesis of PPD by chemical polymerization. The molecular structure of conductive polymer synthesized were discussed by using SEM, FT-IR, NMR. The electrical conductivity measurements were carried out at room temperature. The electrical conductivity which was obtained from electrical instrument was 1.98${\times}$10$\^$-2/ S/cm at ambient temperature.

  • PDF

리튬이차전지용 정극활물질 LiMn2O4의 안정화(II) -수용액계에서 치환형 LiMn2O4의 안정성- (Stabilization of LiMn2O4 Electrode for Lithium Secondary Bttery (II) -Stability of Substituted LiMn2O4 in Aqueous System-)

  • 이진식;이철태
    • 공업화학
    • /
    • 제10권6호
    • /
    • pp.832-837
    • /
    • 1999
  • 수용액계에서 정극활물질의 안정성을 1 M LiOH 용액에서 Tafel plot를 통해서 측정하였으며, 이 때 $LiM_xMn_{2-x}O_4$(x=0.05~0.1) 전극은 100 mA에서 0.13~0.15 mV의 과전압으로 $LiMn_2O_4$ 전극보다 0.05 mV가 낮은 과전압을 나타냈다. 또한 전위변화에 따른 전해질의 전도도는 $LiM_xMn_{2-x}O_4$가 스피넬 구조의 $LiMn_2O_4$보다 높고 나타났으며, $Mn^{+2}$의 용해에 의한 용액저항은 상대적으로 낮게 나타났다.

  • PDF

Polyaniline을 첨가한 $LiCoO_2$정극활물질의 전기화학적 특성 (The Electrochemical Characteristics of $LiCoO_2$Cathode Materials as a function of Polyaniline contents)

  • 임동규;임석범;김영호;김은옥;류광선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.667-670
    • /
    • 2000
  • The electrochemical characterization was conducted by the addition of chemically synthesized polyaniline on LiCoO$_2$electrode. From the results of XRD and SEM, the phase transition and microstructure were not found. Initial electrochemical characteristics of LiCoO$_2$electrode for lithium secondary battery were evaluated through the charge/discharge within the range of 4.3 V to 3.0 V versus Li/Li$^{+}$. Discharge capacity of LiCoO$_2$electrode without addition of Polyaniline were 160.21 mAh/g. But after addition of polyaniline, lower discharge capacities 25.7 mAh/g was found.d.

  • PDF

리튬 폴리머 전지용 $LiFe_xMn_{1-x}PO_4$ 정극활물질의 전기화학적 특성 (The electrochemical properties of $LiFe_xMn_{1-x}PO_4$ cathode materials for lithium polymer batteries)

  • 전대규;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.424-425
    • /
    • 2005
  • The purpose of this study is to research and develop $LiFe_xMn_{1-x}PO_4$ cathode for lithium polymer batteries. $LiFe_xMn_{1-x}PO_4$ cathode active materials were prepared using a solid-state reaction by adding carbon black to the synthetic precursors. We investigated cyclic voltammetry and charge/discharge cycling of $LiFe_xMn_{1-x}PO_4$/SPE/Li cells. The discharge capacity of $LiFe_{0.5}Mn_{0.5}PO_4$ was l26mAh/g and 110mAh/g at 1st and 10th cycle.

  • PDF

리튬 폴리머 전지용 정극활물질 $LiFePO_4$$LiM_xFe_{1-x}PO_4$의 전기화학적 특성 (Electrochemical Properties of $LiFePO_4$ and $LiM_xFe_{1-x}PO_4$ Cathode Materials for Lithium Polymer Batteries)

  • 조흥관;김은미;박경희;구할본;박복기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.133-133
    • /
    • 2009
  • Phospho-olivine $LiFePO_4$ and $LiTi_{0.1}Fe_{0.9}PO_4$ cathode materials were prepared by the solid-state reaction. To improve conductivity we carried out electrochemical performance of $Ti^{2+}$ doped $LiFePO_4$. The $Ti^{2+}$ doped $LiFePO_4$ started 3.36 V of flat voltage on discharge curve and showed a gentle decline in the curve compared to undoped $LiFePO_4$ without great changes of capacity. And so, we could achieve to improve electrochemical performance as reversible, cycle life. Similarly, $LiFePO_4$ doping with $Ti^{2+}$ was showed the effect of dopant which was obtained the improved discharge capacity as 140 mAh/g and good cycling performance.

  • PDF

LiNi1/3Mn1/3Co1/3O2계 정극활물질을 적용한 전극 제조조건 최적화 연구 (A Study on Optimization of Manufacturing Condition for LiNi1/3Mn1/3Co1/3O2-based Cathode Electrode)

  • 김현수;김성일;이창우;문성인;김우성
    • 한국전기전자재료학회논문지
    • /
    • 제19권2호
    • /
    • pp.139-144
    • /
    • 2006
  • A fabrication condition of the cathode electrode was optimized in a lithium secondary battery. The $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ powders were used as a cathode material. The $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$/Li cells were prepared with a certain formulation and their cycleability and rate-capability were evaluated. Optimum electrode composition simulated from the evaluated value was 86.3: 5.6: 8.1 in mass $\%$ of active material: binder: conducting material. Discharge capacity decreased markedly as the press ratio exceeded $30\%$ during preparation of the electrode. Discharge performance at a high current rate deteriorated abruptly as the electrode thickness was over $120{\mu}m$.

SHS합성법에 의한 리튬이온이차전지용 정극활물질 LiMn2O4 의 제조 (Synthesis of LiMn2O4 Powders Using Li-Ion Secondary Battery by SHS Process)

  • 장창현;;김정한;원창환
    • 한국세라믹학회지
    • /
    • 제42권7호
    • /
    • pp.503-508
    • /
    • 2005
  • A simple and effective method for the synthesis of LiMn$_{2}$O$_{4}$ powder as a cathode material for lithium secondary battery is reported. Micrometer size LiMn$_{2}$O$_{4}$ was prepared by combustion synthesis technique employing initial mixture of l.l LiNO$_{3}$ -1.3Mn-0.7MnO$_{2}$-1NaCl composition. Parametric study of the combustion process including molar ratio of Mn/MnO$_{2}$ and NaCl concentration were carried out under air atmosphere. The combustion products obtained were additionally heat treated at the temperature 900$^{\circ}C$ and the washed by distilled water. The results of charging-discharging characteristics revealed that LiMn$_{2}$O$_{4}$ cell synthesized in the presence of NaCl had a high capacity and much better reversibility than one formed without NaCl An approximate chemical mechanism for LiMn$_{2}$O$_{4}$ formation is proposed.