BFB12

리튬이차전지용 정극활물질 $Li_{1-x}NiO_2$ 의 열적 특성에 관한 연구 Thermal behavior and the decomposition mechanism of $Li_{1-x}NiO_2$

<u>이경근</u>, 김광범 연세대학교 금속공학과

Thermal behavior of electrochemically delithiated $\text{Li}_{1-x}\text{NiO}_2$ (R $\overline{3}$ m or C2/m) up to 400°C was studied by thermogravimetry (TG), differential scanning calorimetry (DSC), high temperature x-ray diffraction (XRD) and x-ray absorption (XAS) measurements and its thermal decomposition mechanism was proposed.

Delithiated Li_{1-x}NiO₂ was thermally decomposed to a spinel phase (Fd3m) at around 220 °C. For $x \le 0.5$, Li_{1-x}NiO₂ was decomposed to LiNiO₂ and LiNi₂O₄ spinel and the fraction of the spinel in the decomposed product increased almost linearly with x. For x > 0.5, Li_{1-x}NiO₂ was converted into the spinel and this reaction was accompanied by oxygen evolution. On further heating, delithiated Li_{1-x}NiO₂ of all compositions turned into a rock salt phase (Fm3m) with NiO structure. The temperature for the decomposition of Li_{1-x}NiO₂ to a spinel was independent on x, however, the temperature for the decomposition to a rock salt phase decreased with x. The thermal behavior of Li_{1-x}NiO₂ could be interpreted as an overlap of the exothermic rearrangement of nickel and lithium cations to form a spinel or a rock salt phase and the endothermic oxygen evolution reaction.