• Title/Summary/Keyword: 정규화 변수

Search Result 183, Processing Time 0.021 seconds

Bearing Faults Identification of an Induction Motor using Acoustic Emission Signals and Histogram Modeling (음향 방출 신호와 히스토그램 모델링을 이용한 유도전동기의 베어링 결함 검출)

  • Jang, Won-Chul;Seo, Jun-Sang;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.17-24
    • /
    • 2014
  • This paper proposes a fault detection method for low-speed rolling element bearings of an induction motor using acoustic emission signals and histogram modeling. The proposed method performs envelop modeling of the histogram of normalized fault signals. It then extracts and selects significant features of each fault using partial autocorrelation coefficients and distance evaluation technique, respectively. Finally, using the extracted features as inputs, the support vector regression (SVR) classifies bearing's inner, outer, and roller faults. To obtain optimal classification performance, we evaluate the proposed method with varying an adjustable parameter of the Gaussian radial basis function of SVR from 0.01 to 1.0 and the number of features from 2 to 150. Experimental results show that the proposed fault identification method using 0.64-0.65 of the adjustable parameter and 75 features achieves 91% in classification performance and outperforms conventional fault diagnosis methods as well.

A Case Study on Text Analysis Using Meal Kit Product Review Data (밀키트 제품 리뷰 데이터를 이용한 텍스트 분석 사례 연구)

  • Choi, Hyeseon;Yeon, Kyupil
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.5
    • /
    • pp.1-15
    • /
    • 2022
  • In this study, text analysis was performed on the mealkit product review data to identify factors affecting the evaluation of the mealkit product. The data used for the analysis were collected by scraping 334,498 reviews of mealkit products in Naver shopping site. After preprocessing the text data, wordclouds and sentiment analyses based on word frequency and normalized TF-IDF were performed. Logistic regression model was applied to predict the polarity of reviews on mealkit products. From the logistic regression models derived for each product category, the main factors that caused positive and negative emotions were identified. As a result, it was verified that text analysis can be a useful tool that provides a basis for maximizing positive factors for a specific category, menu, and material and removing negative risk factors when developing a mealkit product.

A Practical Approach Determining an IDF formula with Limited Rainfall-Duration Data Availability (제한적 강우-지속기간 자료를 이용한 실용적 IDF 관계식의 유도)

  • Seong, Kee-Won
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.6
    • /
    • pp.587-595
    • /
    • 2008
  • In order to aid the derivation of the IDF relationship for a station with insufficient duration-rainfall data, an approach to derive a simple and practical IDF formula is presented. The IDF formula is described simply by the term of the two parameters and a design frequency. The model parameters were estimated from a statistical technique based on the normal distribution of transformed rainfall intensities. In order to give the transformed data, both the Kruskal-Wallis statistic and the Manly transformation of duration-rainfall data were adopted. With the methods, the proposed IDF formula becomes a simpler model that compares well with conventional form. In addition, it allows avoiding an exceptional condition of the higher rainfall intensity for longer duration. The performance of the proposed formula was evaluated by using the limited rainfall data for short duration from two gauge stations. The result showed that the IDF formula developed in this work was an effective tool, providing a reliable relationship between the intensity and duration even though insufficient data are only available.

The Characteristics of Visible Reflectance and Infra Red Band over Snow Cover Area (적설역에서 나타나는 적외 휘도온도와 반사도 특성)

  • Yeom, Jong-Min;Han, Kyung-Soo;Lee, Ga-Lam
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.193-203
    • /
    • 2009
  • Snow cover is one of the important parameters since it determines surface energy balance and its variation. To classify snow and cloud from satellite data is very important process when inferring land surface information. Generally, misclassified cloud and snow pixel can lead directly to error factor for retrieval of surface products from satellite data. Therefore, in this study, we perform algorithm for detecting snow cover area with remote sensing data. We just utilize visible reflectance, and infrared channels rather than using NDSI (Normalized Difference Snow Index) which is one of optimized methods to detect snow cover. Because COMS MI (Meteorological Imager) channels doesn't include near infra-red, which is used to produce NDSI. Detecting snow cover with visible channel is well performed over clear sky area, but it is difficult to discriminate snow cover from mixed cloudy pixels. To improve those detecting abilities, brightness temperature difference (BTD) between 11 and 3.7 is used for snow detection. BTD method shows improved results than using only visible channel.

A Constructing the Efficiency Multiple Output Switching Function of the Combinational Logic Systems (조합논리시스템의 효율적인 다중출력스위칭함수 구성)

  • Park, Chun-Myoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.41-45
    • /
    • 2017
  • This paper presents a method of constructing the efficiency multiple output switching function of the combinational logic systems. The proposed method reduce the optimized input variable pair and output variable pair after we obtained the final multiple output switching function which was time based multiplexing and obtained the common multiple end node extension logic decision diagram. Also the proposed method have an advantage of the cost, input-output node number, circuit simplification, increment of the arithmetic speed, and more regularity and extensibility compare with previous method.

Real-Time Camera Tracking for Markerless Augmented Reality (마커 없는 증강현실을 위한 실시간 카메라 추적)

  • Oh, Ju-Hyun;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.16 no.4
    • /
    • pp.614-623
    • /
    • 2011
  • We propose a real-time tracking algorithm for an augmented reality (AR) system for TV broadcasting. The tracking is initialized by detecting the object with the SURF algorithm. A multi-scale approach is used for the stable real-time camera tracking. Normalized cross correlation (NCC) is used to find the patch correspondences, to cope with the unknown and changing lighting condition. Since a zooming camera is used, the focal length should be estimated online. Experimental results show that the focal length of the camera is properly estimated with the proposed online calibration procedure.

A Study on the Retrieval of River Turbidity Based on KOMPSAT-3/3A Images (KOMPSAT-3/3A 영상 기반 하천의 탁도 산출 연구)

  • Kim, Dahui;Won, You Jun;Han, Sangmyung;Han, Hyangsun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1285-1300
    • /
    • 2022
  • Turbidity, the measure of the cloudiness of water, is used as an important index for water quality management. The turbidity can vary greatly in small river systems, which affects water quality in national rivers. Therefore, the generation of high-resolution spatial information on turbidity is very important. In this study, a turbidity retrieval model using the Korea Multi-Purpose Satellite-3 and -3A (KOMPSAT-3/3A) images was developed for high-resolution turbidity mapping of Han River system based on eXtreme Gradient Boosting (XGBoost) algorithm. To this end, the top of atmosphere (TOA) spectral reflectance was calculated from a total of 24 KOMPSAT-3/3A images and 150 Landsat-8 images. The Landsat-8 TOA spectral reflectance was cross-calibrated to the KOMPSAT-3/3A bands. The turbidity measured by the National Water Quality Monitoring Network was used as a reference dataset, and as input variables, the TOA spectral reflectance at the locations of in situ turbidity measurement, the spectral indices (the normalized difference vegetation index, normalized difference water index, and normalized difference turbidity index), and the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived atmospheric products(the atmospheric optical thickness, water vapor, and ozone) were used. Furthermore, by analyzing the KOMPSAT-3/3A TOA spectral reflectance of different turbidities, a new spectral index, new normalized difference turbidity index (nNDTI), was proposed, and it was added as an input variable to the turbidity retrieval model. The XGBoost model showed excellent performance for the retrieval of turbidity with a root mean square error (RMSE) of 2.70 NTU and a normalized RMSE (NRMSE) of 14.70% compared to in situ turbidity, in which the nNDTI proposed in this study was used as the most important variable. The developed turbidity retrieval model was applied to the KOMPSAT-3/3A images to map high-resolution river turbidity, and it was possible to analyze the spatiotemporal variations of turbidity. Through this study, we could confirm that the KOMPSAT-3/3A images are very useful for retrieving high-resolution and accurate spatial information on the river turbidity.

Development of Korean Tissue Probability Map from 3D Magnetic Resonance Images (3차원 MR 영상으로부터의 한국인 뇌조직확률지도 개발)

  • Jung Hyun, Kim;Jong-Min, Lee;Uicheul, Yoon;Hyun-Pil, Kim;Bang Bon, Koo;In Young, Kim;Dong Soo, Lee;Jun Soo, Kwon;Sun I., Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.323-328
    • /
    • 2004
  • The development of group-specific tissue probability maps (TPM) provides a priori knowledge for better result of cerebral tissue classification with regard to the inter-ethnic differences of inter-subject variability. We present sequential procedures of group-specific TPM and evaluate the age effects in the structural differences of TPM. We investigated 100 healthy volunteers with high resolution MRI scalming. The subjects were classified into young (60, 25.92+4.58) and old groups (40, 58.83${\pm}$8.10) according to the age. To avoid any bias from random selected single subject and improve registration robustness, average atlas as target for TPM was constructed from skull-stripped whole data using linear and nonlinear registration of AIR. Each subject was segmented into binary images of gray matter, white matter, and cerebrospinal fluid using fuzzy clustering and normalized into the space of average atlas. The probability images were the means of these binary images, and contained values in the range of zero to one. A TPM of a given tissue is a spatial probability distribution representing a certain subject population. In the spatial distribution of tissue probability according to the threshold of probability, the old group exhibited enlarged ventricles and overall GM atrophy as age-specific changes, compared to the young group. Our results are generally consistent with the few published studies on age differences in the brain morphology. The more similar the morphology of the subject is to the average of the population represented by the TPM, the better the entire classification procedure should work. Therefore, we suggest that group-specific TPM should be used as a priori information for the cerebral tissue classification.

Comparison of Prediction Accuracy Between Classification and Convolution Algorithm in Fault Diagnosis of Rotatory Machines at Varying Speed (회전수가 변하는 기기의 고장진단에 있어서 특성 기반 분류와 합성곱 기반 알고리즘의 예측 정확도 비교)

  • Moon, Ki-Yeong;Kim, Hyung-Jin;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.280-288
    • /
    • 2022
  • This study examined the diagnostics of abnormalities and faults of equipment, whose rotational speed changes even during regular operation. The purpose of this study was to suggest a procedure that can properly apply machine learning to the time series data, comprising non-stationary characteristics as the rotational speed changes. Anomaly and fault diagnosis was performed using machine learning: k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), and Random Forest. To compare the diagnostic accuracy, an autoencoder was used for anomaly detection and a convolution based Conv1D was additionally used for fault diagnosis. Feature vectors comprising statistical and frequency attributes were extracted, and normalization & dimensional reduction were applied to the extracted feature vectors. Changes in the diagnostic accuracy of machine learning according to feature selection, normalization, and dimensional reduction are explained. The hyperparameter optimization process and the layered structure are also described for each algorithm. Finally, results show that machine learning can accurately diagnose the failure of a variable-rotation machine under the appropriate feature treatment, although the convolution algorithms have been widely applied to the considered problem.

Effect Analysis of Residual Frequency Offsets for Asynchronous MC-CDMA Uplink Systems (비동기 MC-CDMA 상향 링크 시스템에서의 잔류 주파수 옵셋 영향 분석)

  • Ko, Kyun-Byoung;Woo, Choong-Chae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.8
    • /
    • pp.9-15
    • /
    • 2010
  • This paper presents an analysis of asynchronous multicarrier-code division multiple access (MC-CDMA) uplink systems over frequency-selective multipath fading channels when the frequency offsets (FOs) of all users are random variables and the frequency offset for the desired user is compensated. The effect of a residual frequency offset(RFO) on the average bit error rate (BER) is evaluated by the semi-analytical method, then the approximated BER performance is obtained as a closed-form expression. Moreover, the signal to noise ratio (SNR) loss caused by RFO is evaluated. Derived results show that the performance degradation due to RFO is negligible if the estimation error of RFO for the desired user is less than the normalized value of 0.1.