DOI QR코드

DOI QR Code

Bearing Faults Identification of an Induction Motor using Acoustic Emission Signals and Histogram Modeling

음향 방출 신호와 히스토그램 모델링을 이용한 유도전동기의 베어링 결함 검출

  • Jang, Won-Chul (School of Electrical and Computer Engineering, University of Ulsan) ;
  • Seo, Jun-Sang (School of Electrical and Computer Engineering, University of Ulsan) ;
  • Kim, Jong-Myon (School of Electrical and Computer Engineering, University of Ulsan)
  • 장원철 (울산대학교 전기전자컴퓨터공학과) ;
  • 서준상 (울산대학교 전기전자컴퓨터공학과) ;
  • 김종면 (울산대학교 전기전자컴퓨터공학과)
  • Received : 2014.06.26
  • Accepted : 2014.09.19
  • Published : 2014.11.29

Abstract

This paper proposes a fault detection method for low-speed rolling element bearings of an induction motor using acoustic emission signals and histogram modeling. The proposed method performs envelop modeling of the histogram of normalized fault signals. It then extracts and selects significant features of each fault using partial autocorrelation coefficients and distance evaluation technique, respectively. Finally, using the extracted features as inputs, the support vector regression (SVR) classifies bearing's inner, outer, and roller faults. To obtain optimal classification performance, we evaluate the proposed method with varying an adjustable parameter of the Gaussian radial basis function of SVR from 0.01 to 1.0 and the number of features from 2 to 150. Experimental results show that the proposed fault identification method using 0.64-0.65 of the adjustable parameter and 75 features achieves 91% in classification performance and outperforms conventional fault diagnosis methods as well.

본 논문에서는 저속으로 회전하는 유도 전동기의 베어링 결함을 검출하기 위해 음향 방출 신호와 히스토그램 모델링을 이용하는 방법을 제안한다. 제안한 방법은 정규화된 결함 신호가 구성하는 히스토그램의 포락선을 모델링하여, 부분 상관 계수와 DET(Distance Evaluation Technique) 기법을 이용하여 결함 유형별 고유한 특징을 추출 및 선택한다. 추출된 특징을 SVR(Support Vector Regression) 분류기의 입력으로 사용하여 베어링의 내륜, 외륜 및 롤러 결함을 분류한다. 최적의 분류 성능을 위해 SVR 커널함수의 매개변수를 0.01에서 1.0까지 변화시키고, 특징 개수는 2에서 150까지 변화시키면서 실험한 결과, 0.64-0.65의 매개변수와 75개의 특징 개수에서 제안한 방법은 약 91%의 분류 성능을 보였고, 또한 기존의 결함 분류 알고리즘보다 높은 분류 성능을 보였다.

Keywords

References

  1. K. Shahzad, P. Cheng, and B. Oelmann, "Architecture Exploration for a High-Performance and Low-Power Wireless Vibration Analyzer", IEEE Sensors Journal, Vol. 13, No. 2, pp. 670-682, February 2013. https://doi.org/10.1109/JSEN.2012.2226238
  2. C.-H. Hwang, M. Kang, J.-M. Kim, "A Study on Robust Feature Vector Extraction for Fault Detection and Classification of Induction Motor in Noise Circumstance," Journal of the Korea Society of Computer and Information, Vol. 16, No. 12, pp. 187-196, 2011. https://doi.org/10.9708/jksci.2011.16.12.187
  3. C.-H. Hwang, Y,-M. Kim, C.-H. Kim, J.-M. Kim, "Fault Detection and Diagnosis of Induction Motors using LPC and DTW Methods," Journal of the Korea Society of Computer and Information, Vol. 16, No. 3, pp. 141-147, 2011. https://doi.org/10.9708/jksci.2011.16.3.141
  4. M. Deriche, "Bearing Fault Diagnosis Using Wavelet Analysis," International Conference on Computers, Communication and Signal Processing with Special Track on Biomedical Engineering, pp. 197-201, 2005.
  5. W. Zhou, B. Lu, T. G. Habetler, and R. G. Harley, "Incipient Bearing Fault Detection via Motor Stator Current Noise Cancellation Using Wiener Filter", IEEE Transactions on Industry Applications, Vol. 45, No. 4, pp. 1309-1317, July 2009. https://doi.org/10.1109/TIA.2009.2023566
  6. S. Lu, Q. He, F. Hu, and F. Kong, "Sequential Multiscale Noise Tuning Stochastic Resonance for Train Bearing Fault Diagnosis in an Embedded System", IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 1, pp. 106-116, Jan. 2014. https://doi.org/10.1109/TIM.2013.2275241
  7. W. Jang, J. Kim "Bearing Multi-Faults Detection of an Induction Motor using Acoustic Emission Signals and Texture Analysis", Journal of the Korea Society of Computer and Information, Vol. 19, No. 4, pp. 55-62, 2014. https://doi.org/10.9708/jksci.2014.19.4.055
  8. M. Kang, W. Jang, and J. Kim, "High-Reliable Classification of Multiple Induction Motor Faults using Robust Vibration Signatures in Noisy Environments based on a LPC Analysis and an EM Algorithm", Journal of the Korea Society of Computer and Information, Vol. 19, No. 2, pp. 21-30, 2014. https://doi.org/10.9708/jksci.2014.19.2.021
  9. B. Robert and J. Antoni, "Rolling Element Bearing Diagnostics", Mechanical System and Signal Processing, Vol. 25, No. 2, pp. 485-520, 2011. https://doi.org/10.1016/j.ymssp.2010.07.017
  10. N. Baydar and A. Ball, "Detection of Gear Failures via Vibration and Acoustic Signals using Wavelet Transform", Mechanical System and Signal Processing, vol. 17, no. 4, pp. 787-804, 2003. https://doi.org/10.1006/mssp.2001.1435
  11. H. E. Jeong, D. S. Gu, H. J. Kim, Tan. Andy, Y. H. Kim and B. K. Choi, "The Application of AE Transducer for the Bearing Condition Monitoring of Low-Speed Machine", KSNVE07S-09-03, 2007.
  12. D. Wang, Q. Miao and R. Kang, "Robust Health Evaluation of Gearbox Subject to Tooth Failure with Wavelet Decomposition", Journal of Sound and Vibration, vol. 324, pp. 1141-1157, 2009. https://doi.org/10.1016/j.jsv.2009.02.013
  13. Yaguo Lei, Zhengjia He, Yanyang Zi, Qiao Hu, "Fault Diagnosis of Rotating Machinery based on Multiple ANFIS Combination with GAs", Mechanical Systems and Signal Processing 21, pp. 2280-2294, 2007. https://doi.org/10.1016/j.ymssp.2006.11.003
  14. A.J. Smola, B. Scholkopf, "A Tutorial on Support Vector Regression", Statistics and Computing 14, pp. 199-222, 2004. https://doi.org/10.1023/B:STCO.0000035301.49549.88
  15. C. Shen, D. Wang, F. Kong, P. W. Tse, "Fault Diagnosis of Rotating Machinery based on the Statistical Parameters of Wavelet Packet Paving and a Generic Support Vector Regressive Classifier", Journal of the International Measurement Confederation 46, pp. 1551-1564, 2013. https://doi.org/10.1016/j.measurement.2012.12.011
  16. V. T. Do and U.-P. Chong, "Signal Model-Based Fault Detection and Diagnosis for Induction Motors Using Features of Vibration Signal in Two-Dimension Domain," Journal of Mechanical Engineering, Vol. 57, No. 9, pp. 655-666, 2011. https://doi.org/10.5545/sv-jme.2010.162