• Title/Summary/Keyword: 정규혼합분포

Search Result 82, Processing Time 0.03 seconds

Estimation of the Mixture of Normals of Saving Rate Using Gibbs Algorithm (Gibbs알고리즘을 이용한 저축률의 정규분포혼합 추정)

  • Yoon, Jong-In
    • Journal of Digital Convergence
    • /
    • v.13 no.10
    • /
    • pp.219-224
    • /
    • 2015
  • This research estimates the Mixture of Normals of households saving rate in Korea. Our sample is MDSS, micro-data in 2014 and Gibbs algorithm is used to estimate the Mixture of Normals. Evidences say some results. First, Gibbs algorithm works very well in estimating the Mixture of Normals. Second, Saving rate data has at least two components, one with mean zero and the other with mean 29.4%. It might be that households would be separated into high saving group and low saving group. Third, analysis of Mixture of Normals cannot answer that question and we find that income level and age cannot explain our results.

Distribution fitting for the rate of return and value at risk (수익률 분포의 적합과 리스크값 추정)

  • Hong, Chong-Sun;Kwon, Tae-Wan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.2
    • /
    • pp.219-229
    • /
    • 2010
  • There have been many researches on the risk management due to rapid increase of various risk factors for financial assets. Aa a method for comprehensive risk management, Value at Risk (VaR) is developed. For estimation of VaR, it is important task to solve the problem of asymmetric distribution of the return rate with heavy tail. Most real distributions of the return rate have high positive kurtosis and low negative skewness. In this paper, some alternative distributions are used to be fitted to real distributions of the return rate of financial asset. And estimates of VaR obtained by using these fitting distributions are compared with those obtained from real distribution. It is found that normal mixture distribution is the most fitted where its skewness and kurtosis of practical distribution are close to real ones, and the VaR estimation using normal mixture distribution is more accurate than any others using other distributions including normal distribution.

A Mixed Norm Image Restoration Algorithm Using Multi Regularization Parameters (다중 정규화 매개 변수를 이용한 혼합 norm 영상 복원 방식)

  • Choi, Kwon-Yul;Kim, Myoung-Jin;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11C
    • /
    • pp.1073-1078
    • /
    • 2007
  • In this paper, we propose an iterative mixed norm image restoration algorithm using multi regularization parameters. A functional which combines the regularized $l_2$ norm functional and the regularized $l_4$ norm functional is proposed to efficiently remove arbitrary noise. The smoothness of each functional is determined by the regularization parameters. Also, a regularization parameter is used to determine the relative importance between the regularized $l_2$ norm functional and the regularized $l_4$ norm functional using kurtosis. An iterative algorithm is utilized for obtaining a solution and its convergence is analyzed. Experimental results demonstrate the capability of the proposed algorithm.

Density Estimation of Mixture Normal Distribution with Binned Data Using Nonlinear Regression

  • Na, Yeong-Ho;Oh, Chang-Hyeok
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.127-130
    • /
    • 2004
  • 혼합정규분포에서 얻어진 히스토그램 자료에서 모수의 추정은 EM 알고리즘 혹은 스프라인 방법이 흔히 이용되고 있다. 본 논문에서는 히스토그램 자료를 비선형회귀모형으로 적합하는 방법을 제시하고, 시뮬레이션으로 제시된 방법과 EM 알고리즘 방법을 비교하였다.

  • PDF

ROC Curve Fitting with Normal Mixtures (정규혼합분포를 이용한 ROC 분석)

  • Hong, Chong-Sun;Lee, Won-Yong
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.269-278
    • /
    • 2011
  • There are many researches that have considered the distribution functions and appropriate covariates corresponding to the scores in order to improve the accuracy of a diagnostic test, including the ROC curve that is represented with the relations of the sensitivity and the specificity. The ROC analysis was used by the regression model including some covariates under the assumptions that its distribution function is known or estimable. In this work, we consider a general situation that both the distribution function and the elects of covariates are unknown. For the ROC analysis, the mixtures of normal distributions are used to estimate the distribution function fitted to the credit evaluation data that is consisted of the score random variable and two sub-populations of parameters. The AUC measure is explored to compare with the nonparametric and empirical ROC curve. We conclude that the method using normal mixtures is fitted to the classical one better than other methods.

A Self-Organizing Network for Normal Mixtures (자기조직화 신경망을 이용한 정규혼합분포의 추정)

  • Ahn, Sung-Mahn;Kim, Myeong-Kyun
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.837-849
    • /
    • 2011
  • A self-organizing network is designed to estimate parameters of normal mixtures. SOMN achieves fast convergence and low possibility of divergence even when sample sizes are small, while PMLE eliminate unnecessary components. The proposed network effectively combines the good properties of SOMN and PMLE. Simulation verifies that the proposed network eliminates unnecessary components in normal mixtures when sample sizes are relatively small.

Using a Normal Test Variable(NTV) for clinical research (임상 자료 분석을 위한 NORMAL TEST VARIABLE(NTV)의 고찰)

  • 이제영;우정수;최달우
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.1
    • /
    • pp.129-139
    • /
    • 1998
  • This article examines the use and some difficulties of Normal Test Variables(NTV) plot for clinical research. Monte Carlo Simulation results are presented based on Normal, Bimodal, Uniform, Exponential and skewed-right distributed Beta Distributions. Further, some solutions are presented and illustrated.

  • PDF

ROC Function Estimation (ROC 함수 추정)

  • Hong, Chong-Sun;Lin, Mei Hua;Hong, Sun-Woo
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.987-994
    • /
    • 2011
  • From the point view of credit evaluation whose population is divided into the default and non-default state, two methods are considered to estimate conditional distribution functions: one is to estimate under the assumption that the data is followed the mixture normal distribution and the other is to use the kernel density estimation. The parameters of normal mixture are estimated using the EM algorithm. For the kernel density estimation, five kinds of well known kernel functions and four kinds of the bandwidths are explored. In addition, the corresponding ROC functions are obtained based on the estimated distribution functions. The goodness-of-fit of the estimated distribution functions are discussed and the performance of the ROC functions are compared. In this work, it is found that the kernel distribution functions shows better fit, and the ROC function obtained under the assumption of normal mixture shows better performance.

Parallel Implementations of the Self-Organizing Network for Normal Mixtures (병렬처리를 통한 정규혼합분포의 추정)

  • Lee, Chul-Hee;Ahn, Sung-Mahn
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.459-469
    • /
    • 2012
  • This article proposes a couple of parallel implementations of the self-organizing network for normal mixtures. In principle, self-organizing networks should be able to be implemented in a parallel computing environment without issue. However, the network for normal mixtures has inherent problem in being operated parallel in pure sense due to estimating conditional expectations of the mixing proportion in each iteration. This article shows the result of the parallel implementations of the network using Java. According to the results, both of the implementations achieved a faster execution without any performance degradation.

Classification accuracy measures with minimum error rate for normal mixture (정규혼합분포에서 최소오류의 분류정확도 측도)

  • Hong, C.S.;Lin, Meihua;Hong, S.W.;Kim, G.C.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.4
    • /
    • pp.619-630
    • /
    • 2011
  • In order to estimate an appropriate threshold and evaluate its performance for the data mixed with two different distributions, nine kinds of well-known classification accuracy measures such as MVD, Youden's index, the closest-to- (0,1) criterion, the amended closest-to- (0,1) criterion, SSS, symmetry point, accuracy area, TA, TR are clustered into five categories on the basis of their characters. In credit evaluation study, it is assumed that the score random variable follows normal mixture distributions of the default and non-default states. For various normal mixtures, optimal cut-off points for classification measures belong to each category are obtained and type I and II error rates corresponding to these cut-off points are calculated. Then we explore the cases when these error rates are minimized. If normal mixtures might be estimated for these kinds of real data, we could make use of results of this study to select the best classification accuracy measure which has the minimum error rate.