• Title/Summary/Keyword: 정규기저

Search Result 83, Processing Time 0.027 seconds

A Fast Diverse Calculation Method over Finite Field GF($2^m$) (유한체 GF($2^m$)상에서의 빠른 역원계산 기법)

  • 박정식;안금혁;김영길;장청룡
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1996.11a
    • /
    • pp.145-150
    • /
    • 1996
  • 정보보호기법을 적용한 다양한 서비스의 구현에 있어서는 적용기법에서 채택한 암호학적 연산에 의해 그 실용성이 종속하게 되며 이러한 실용화를 위한 하드웨어 또는 소프트웨어적 구현기법에 관한 많은 연구가 진행되고 있다. 본 논문에서는 유한체 GF(2$^{m}$ )상에서의 역원계산을 효율적이며 신속하게 처리할 수 있는 방법에 관해서 다루고 있다. 본 논문에서 제안하는 방법은 정규기저를 이용하여 임의의 유한체위에 적용 가능하도록 설계된 기법이다. 본 논문에서의 제안 방법은 이미 알려진 Itoh의 방법보다 대부분의 정수에 대하여 효율적임을 보인다.

  • PDF

A D-H type Public Key Distribution System using a Normal Basis in GF($2^m$) (GF($2^m$/)의 정규기저를 사용한 D-H 형 공용키이분배 시스템)

  • 이창순;문상재
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1991.11a
    • /
    • pp.49-57
    • /
    • 1991
  • Several variants of the Diffie-Hellman public key distribution are examined, and a simple and relatively secure public key distribution protocol is introduced. Using a normal basis of GF(2$^{m}$ ), this protocol is implemented, and simulated in software. A program is developed, whereby a normal basis is effectively searched for fast multiplication in GF(2$^{m}$ ).

  • PDF

High-Speed Algebraic Decoding of the Golay Codes (대수적 복호에 의한 Golay 부호의 고속 복호기 설계)

  • 김창규
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.6 no.1
    • /
    • pp.53-60
    • /
    • 1996
  • 오증 요소로부터 오류위치다항식의 계수를 계산함으로서 (23,12) Golay 부호를 복호할 수 있는 대수적 복호법이 최근 증명되었다. GF(2)상에서의 3중 오류정정 BCH부호의 복호법을 이 부호에 완벽하게 적용하여 해석하는 것을 소개한다. 그리고 GF(2)에 대한 최적의 정규기저를 구하여 이를 유한체 연산에 적용하며 단계별로 복호 회로의 구성을 제시한다. 이는 기존의 복호기보다 논리회로적으로 간단하며, 복호된 정보를 얻기까지 35번의 치환이 필요하다.

Median HRIR Customization via Principal Components Analysis (주성분 분석을 이용한 HRIR 맞춤 기법)

  • Hwang, Sung-Mok;Park, Young-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.638-648
    • /
    • 2007
  • A principal components analysis of the entire median HRIRs in the CIPIC HRTF database reveals that the individual HRIRs can be adequately reconstructed by a linear combination of several orthonormal basis functions. The basis functions represent the inter-individual and inter-elevation variations in median HRIRs. There exist elevation-dependent tendencies in the weights of basis functions, and the basis functions can be ordered according to the magnitude of standard deviation of the weights at each elevation. We propose a HRIR customization method via tuning of the weights of 3 dominant basis functions corresponding to the 3 largest standard deviations at each elevation. Subjective listening test results show that both front-back reversal and vertical perception can be improved with the customized HRIRs.

A Diagnosis Method of Basal Cell Carcinoma by Raman Spectra of Skin Tissue using NMF Algorithm (피부 조직의 라만 스펙트럼에서 NMF 알고리즘을 통한 기저 세포암 진단 방법)

  • Park, Aaron;Baek, Sung-June
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.196-202
    • /
    • 2013
  • Basal cell carcinoma (BCC) is the most common skin cancer and its incidence is increasing rapidly. In this paper, we propose a diagnosis method of basal cell carcinoma by Raman spectra of skin tissue using the NMF(non-negative matrix factorization) algorithm. After preprocessing steps, measured Raman spectra is used classification experiments. The weight and the basis can be obtained in a simple matrix operation and a column vector of the matrix decompsed by the NMF. Linear combination of bases and weights, it is possible to approximate the average of Raman spectra. The classification method is to select the class which to minimize the root mean square of the difference of the linear combination and the objective spectrum. According to the experimental results, the proposed method shows the promising results to diagnosis BCC. In addition, it confirmed that the proposed method compared with the previous research result could be effectively applied in the analysis of the Raman spectra.

A Fast Algorithm for Computing Multiplicative Inverses in GF(2$^{m}$) using Factorization Formula and Normal Basis (인수분해 공식과 정규기저를 이용한 GF(2$^{m}$ ) 상의 고속 곱셈 역원 연산 알고리즘)

  • 장용희;권용진
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.5_6
    • /
    • pp.324-329
    • /
    • 2003
  • The public-key cryptosystems such as Diffie-Hellman Key Distribution and Elliptical Curve Cryptosystems are built on the basis of the operations defined in GF(2$^{m}$ ):addition, subtraction, multiplication and multiplicative inversion. It is important that these operations should be computed at high speed in order to implement these cryptosystems efficiently. Among those operations, as being the most time-consuming, multiplicative inversion has become the object of lots of investigation Formant's theorem says $\beta$$^{-1}$ =$\beta$$^{2}$sup m/-2/, where $\beta$$^{-1}$ is the multiplicative inverse of $\beta$$\in$GF(2$^{m}$ ). Therefore, to compute the multiplicative inverse of arbitrary elements of GF(2$^{m}$ ), it is most important to reduce the number of times of multiplication by decomposing 2$^{m}$ -2 efficiently. Among many algorithms relevant to the subject, the algorithm proposed by Itoh and Tsujii[2] has reduced the required number of times of multiplication to O(log m) by using normal basis. Furthermore, a few papers have presented algorithms improving the Itoh and Tsujii's. However they have some demerits such as complicated decomposition processes[3,5]. In this paper, in the case of 2$^{m}$ -2, which is mainly used in practical applications, an efficient algorithm is proposed for computing the multiplicative inverse at high speed by using both the factorization formula x$^3$-y$^3$=(x-y)(x$^2$+xy+y$^2$) and normal basis. The number of times of multiplication of the algorithm is smaller than that of the algorithm proposed by Itoh and Tsujii. Also the algorithm decomposes 2$^{m}$ -2 more simply than other proposed algorithms.

VLSI Architecture for High Speed Implementation of Elliptic Curve Cryptographic Systems (타원곡선 암호 시스템의 고속 구현을 위한 VLSI 구조)

  • Kim, Chang-Hoon
    • The KIPS Transactions:PartC
    • /
    • v.15C no.2
    • /
    • pp.133-140
    • /
    • 2008
  • In this paper, we propose a high performance elliptic curve cryptographic processor over $GF(2^{163})$. The proposed architecture is based on a modified Lopez-Dahab elliptic curve point multiplication algorithm and uses Gaussian normal basis for $GF(2^{163})$ field arithmetic. To achieve a high throughput rates, we design two new word-level arithmetic units over $GF(2^{163})$ and derive a parallelized elliptic curve point doubling and point addition algorithm with uniform addressing based on the Lopez-Dahab method. We implement our design using Xilinx XC4VLX80 FPGA device which uses 24,263 slices and has a maximum frequency of 143MHz. Our design is roughly 4.8 times faster with 2 times increased hardware complexity compared with the previous hardware implementation proposed by Shu. et. al. Therefore, the proposed elliptic curve cryptographic processor is well suited to elliptic curve cryptosystems requiring high throughput rates such as network processors and web servers.

Efficient Serial Gaussian Normal Basis Multipliers over Binary Extension Fields

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.197-203
    • /
    • 2009
  • Finite field arithmetic is very important in the area of cryptographic applications and coding theory, and it is efficient to use normal bases in hardware implementation. Using the fact that $GF(2^{mk})$ having a type-I optimal normal basis becomes the extension field of $GF(2^m)$, we, in this paper, propose a new serial multiplier which reduce the critical XOR path delay of the best known Reyhani-Masoleh and Hasan's serial multiplier by 25% and the number of XOR gates of Kwon et al.'s multiplier by 2 based on the Reyhani-Masoleh and Hasan's serial multiplier for type-I optimal normal basis.

  • PDF

Improvement of Face Recognition Rate by Normalization of Facial Expression (표정 정규화를 통한 얼굴 인식율 개선)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.15B no.5
    • /
    • pp.477-486
    • /
    • 2008
  • Facial expression, which changes face geometry, usually has an adverse effect on the performance of a face recognition system. To improve the face recognition rate, we propose a normalization method of facial expression to diminish the difference of facial expression between probe and gallery faces. Two approaches are used to facial expression modeling and normalization from single still images using a generic facial muscle model without the need of large image databases. The first approach estimates the geometry parameters of linear muscle models to obtain a biologically inspired model of the facial expression which may be changed intuitively afterwards. The second approach uses RBF(Radial Basis Function) based interpolation and warping to normalize the facial muscle model as unexpressed face according to the given expression. As a preprocessing stage for face recognition, these approach could achieve significantly higher recognition rates than in the un-normalized case based on the eigenface approach, local binary patterns and a grey-scale correlation measure.