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요 약

 

부호이론이나 암호학의 응용분야에 유한체는 매우 중요한 내용이고, 컴퓨터에서의 구현시에는 종규기저를 

사용하는 것이 효과적이다. 본 논문에서는 유한체 타입 I 최적정규기저를 가지는 는 의 확

대체가 된다는 사실을 이용하여 지금까지 알려진 가장 효율적인 Reyhani-Masoleh and Hasan의 곱셈기보다 

25%정도 빠른 곱셈기를 소개하려고 한다. 

ABSTRACT

Finite field arithmetic is very important in the area of cryptographic applications and coding theory, and it is efficient to use 

normal bases in hardware implementation. Using the fact that   having a type-I optimal normal basis becomes the 

extension field of  , we, in this paper, propose a new serial multiplier which reduce the critical XOR path delay of the 

best known Reyhani-Masoleh and Hasan's serial multiplier by 25% and the number of XOR gates of Kwon et al.'s multiplier by 

2 based on the Reyhani-Masoleh and Hasan's serial multiplier for type-I optimal normal basis.
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I. Introduction

In 1986, Massey-Omura[1] invented the serial 

multiplier which has a long path delay with parallel 

input and serial output. Agnew et al.[2] proposed a 

Sequential Multiplier with Parallel Output(SMPO) by 

improving Massey-Omura's serial multiplier. Rec-

ently, Reyhani-Masoleh and Hasan[3,4] proposed a 

SMPO with lower area complexity and path delay 

than that of Agnew et al. In 2004, Kwon et al.[5] 

proposed a SMPO improving that of Agnew et al. 

whose path delay is unchanged and area complexity 

is equal to or higher than that of Reyhani-Masoleh 

and Hasan according to type-II or otherwise. On the 

other hand, Yang et al.[6] proposed a SMPO which 

has the same path delay as that of Kwon et al. by 

reconstructing the multiplication matrix of Reyh-

ani-Masoleh and Hasan over type-II optimal normal 

basis. It is well known that if 8 is not a divisor of 

m and   has a type-k Gaussian normal basis, 

where m odd, then there is a Gaussian normal basis 

of type-k in   and especially if   is of 
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type k, then   =<2>[7]. And many of the 

finite fields  , m ≤ 2000, having Gaussian 

normal bases of type-II, VI, X or XII satisfy the 

condition   =<2> according to Standard 

P1363[5], ANSI X9.63[8] if $m$ is odd. The 

multipliers for many of finite fields   thus can 

be constructed by using the multipliers for the 

extension field   with type-I optimal normal 

basis based on Reyhani-Masoleh and Hasan. In 2005, 

Kim et al.[7] proposed a serial multiplier for type-IV 

Gaussian normal basis by embedding   into 

the extension field   with type-I optimal 

normal basis. Moreover, most of cryptographical 

applications including  ECC are mainly implemented 

over   for odd prime $m$. Therefore, in this 

paper, m is regarded as odd because of the facts 

above, and using the fact that   having type-k 

Gaussian normal basis is a subfield of   

having a type-I optimal normal basis if 

=<2> and m odd, we propose a new architecture for 

SMPO which transforms the Gaussian normal basis 

multiplication in   into the type-I optimal 

normal basis multiplication in  based on 

Reyhani-Masoleh and Hasan's SMPO over   

having a type-k Gaussian normal basis. Our SMPO 

reduce the XOR critical path delay of the serial 

multiplier of Reyhani-Masoleh and Hasan by 25% 

and has the same critical path delay as that of 

Kwon et al. if k=4, and reduce the XOR critical path 

delay of those of Reyhani-Masoleh and Hasan and 

Kwon et al. by 20% if k=10. 

 

II Type -k Gaussian Normal Bases 
Multipliers 

It is well known that there is always a normal 

basis for the finite field   over  for any 

positive integer l[5,9]. Multiplications in finite fields 

are explicitly discussed in [10] and the method for 

representing an element of   as an element 

of  , where n=mk is introduced in [7]. We, in 

this section, propose a new multiplier modifying the 

Reyhani-Masoleh and Hasan [3,4]'s multiplier. We 

use two notations ((i))≡i mod m and <<i>>≡ I 

mod n from now on. Let   be a finite field 

generated by a AOP and 

be a root of the AOP   ⋯, then 

 generates the type-I optimal normal basis. In this 

case, n becomes even and    =  , where i=1,2,

⋯, v=n/2, since   . We then have the following 

lemma since  is a root of the AOP.

Lemma 1(Confer [11])

 













 ≤ 




 







   

where   satisfies the congruence  ≡
  mod 

n+1.

Reyhani-Masoleh and Hasan[12] proved the 

following lemma by substituting all the entries of 

the multiplication matrix M=(
 



) by the elements 

of the form   


, 0 ≤j ≤n-1.

Lemma 2(Confer [4])

Let be a finite field having a type-I 

optimal normal basis,  a generator of the optimal 

normal basis, A,B in  , C=AB and g ∈{0,1 }. 

Then

C=




 ≫≪≫




















+

   









 



    

where
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   ≫ ≫ i f   
 ≫ ≫ i f   

III. A New Serial Architecture for the Type 
k Gaussian Normal Basis Multiplier

Let m,k be positive integers, n=mk, n+1 prime 

such that = <2>. Since m is odd, k 

should be even. Now, We like to extend the 

elements A,B ∈  to the elements in       

  with respect to type-I optimal basis and 

then construct a new multiplier for the finite 

subfield   to calculate C=AB modifying 

Reyhani-Masoleh and Hasan multiplier described in 

section 2. For the later, we now define an exponent.

Definition 1. Suppose that n=mk, n+1 prime, 

= <2> and   is the

exponent defined in Lemma 1. For 1  ≤ ≤ 

u=(m-1)/2 and i ∈{, m-, m+, ⋯, km/2 -}, 

we will define   as follows.

   ≡mod
 ≡mod  

Then we have the following.

Theorem 1. Assume that   has a Gaussian 

normal basis of type k, n=mk,  =<2>, g 

∈{0,1} and u=(m-1)/2. If A,B are belong to   

and C is the product of A and B, then 

C= 














 



  







 









  




 where 

   i f   i f     

proof) Without loss of generality, we prove the 

theorem for g=1. Let A,B ∈  ⊂ . 

Then

  




 ≫ ≫ 





















,     and 

  ≤ ≤ . Therefore we 

calculate only   for i=0,1,2, ⋯, m-1. Next, if 

i=wm, 1  ≤w ≤ k/2, then

   ≫ ≫  

  .

Lastly, 

   ≫ ≫  

  

Therefore, for 1 ≤ i ≤(m-1)/2,







 






 










=
 









Thus,






















 










=
 















.

For 1 ≤≤u=(m-1)/2, we divide s into two 

classes as follows.

(1) = wm + , 0≤w≤k/2 -1,

(2) = wm - , 0≤w≤k/2 ,

For (1),

    

     =  ≫  ≫

     =  

     =

   

For (2),

   

     =  ≫  ≫

     =  
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     = 

 Therefore,

 C= 





 






 



  




    


 









  






This completes the proof.

From Theorem 1, if  

 
 



 







 

         +







 

,

then

  
 

 ⋯
 

where  

 

 
 

 .

Moreover, since 


 appears k times for each j, 

there can occur at most ku+1 terms. However, that 




 appears twice for each  means the same value 

is added twice. Therefore such terms can be 

neglected. Consequently, the number of XOR gates 

of the serial multiplier is

 
 



 




  

⋯

   ,

where 

             i f    i f   
And if we set     ⋯

where

    ≤≤  

       ≤≤ }|+t, where

  i f  i f≠

then   determines the critical path delay of the 

XOR gates. To reduce the value of l, we need the 

following.

Corollary 1. Assume that   has a type-k 

Gaussian normal basis and n=mk,

=<2>. If A,B ∈⊂  

then

  




  






+







 



 
 







 

 


 







  

 





,

 where 

   i f   i f  

proof) If we perform -fold right cyclic shift on 

each basic element 


 appeared in C in Theorem 1 

for each , then 

  









 







 



  




  


  











  




 





Substitute the value of   which has earlier 

derived and matches the bits, then we obtain the 

result.

Therefore if we define

′    







 

   







  



 







  





then

  
′ ′  ⋯′  ′
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where ′ ′      by 

Corollary 1.   

Let ′ ′   ⋯ where

′     ≤  
     ≤ ≤ .

Then the process of calculating C in Corollary 1 

is as follows. Firstly, for each , we seek for   

such that ′
becomes to be optimal and choose  being 

different from ′ . Next,   is obtained by 

-fold and -fold right shift of the first term and the 

second term respectively in the equation of defining 

 . Lastly, C is calculated by ′ s and thus 

XOR path delay for calculating C can be reduced to 

󰀎log′  󰀏 . Therefore the critical path delay is

determined by ′ . 

IV. Optimization

In implementing our proposed multiplier, for a 

fixed 1≦≦u=(m-1)/2 if some

, i= ,    ,⋯ , km/2- , in 

Theorem 1 are the same,  then so are the outputs of 





. Therefore the result is not changed if we 

discard them. So we can reduce the number of XOR 

gates and path delay. In this regard,  the number of 

XOR gates and path delay can be reduced by 

confirming  whether the values of s coincide for 

some i. In some special type of Gaussian normal 

basis, we have the following  notable result.

Lemma 3( Confer [7], Lemma 4  )

Assume that m odd, 4m+1 prime and 

 =<2>. Then one of       

mod m or       mod m 

holds for u=(m-1)/2 if, in  =<2>, 


    



      


or

       
      



      



                        

On the other hand, if   have a type-IV 

Gaussian normal basis and  m is odd, then either 

      or   =    for u=(m-1)/2 

(confer [7]).

Therefore, if   have a type-IV Gaussian 

normal basis and m be odd, then for  u=(m-1)/2, 

either       or         by Lemma 

3.  So, for g=1, there need M=(5m-7)/2 XOR  gates 

and thus there needs M=(7m-13)/2 XOR gates for 

type-VI Gaussian normal basis.

V. Complexity

In this chapter, we calculate the complexities of 

the serial multiplier constructed in Theorem 1 and 

Corollary 1 of section 3.

Ttheorem 2. The maximum complexities of the 

multiplier of Theorem 1 and Corollary 1 are 

a) m AND gates, (k+1)(m-1)/2 +1  XOR gates if 

g=1 and (m+1)/2 AND gates, (k+2)(m-1)/2 XOR 

gates if g=0 and

b)   + (1+ 󰀎log′  󰀏 )    path delay, 

where  ,    are AND delay and XOR delay 

respectively.

proof)

For a), if g=1, then there need one AND gate in 

order to calculate    , and the total number 

of AND gates to generate  is m-1 since, for 

each 1 ≦≦ u=(m-1)/2, there need two AND gates 

in order to calculate . Therefore we need a total 
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number of m AND gates. Since the number of XOR 

gate to generate each  is 1 for

each 1≦ i ≦ u=(m-1)/2, there need a total of 

(m-1)/2 XOR gates. There need 1+k(m-1)/2 to 

calculate 
    except  , 

and thus we need a total of (k+1)(m-1)/2+1 XOR 

gates. By the way, for    , two  coincide by 

Lemma 3. Therefore the optimized total number of 

XOR gates is (5m-7)/2. For g=0, there need (m-1)/2 

and 1 AND gates to generate   and 

respectively, and thus we need a total of (m-1)/2 

AND gates. Similarly, there need a total (k+2)(m-1)/2 

XOR gates in total in case g=0.

  For b), it is immediately that both of the 

number of path delay of AND gates and that of 

XOR gates for calculating   are equal to 1. Thus 

the critical XOR path delay is  1+ 󰀎log′  󰀏 since 

the number of upper bound of the number of XOR 

gates to generate the basic element 


 in 


    except   is l. This 

completes the proof.

VI. Conclusion

Using the fact that   having type-k 

Gaussian normal basis is a subfield of  
having a type-I optimal normal basis if 

   =<2> and m odd, in this paper, we 

proposed a new architecture for SMPO, which 

transforms the Gaussian normal basis multiplication 

in   into the type-I optimal normal basis 

multiplication in  based on Reyhani- 

Masoleh and Hasan's SMPO over   having 

a type-k Gaussian normal basis. We can confirm that 

our proposed SMPO reduce the  XOR critical path 

delay of the serial multiplier of Reyhani-Masoleh and 

Hasan by 25% and has the same critical path delay 

as that of Kwon et al. if k=4, and reduce the XOR 

critical path delay of those of Reyhani-Masoleh and 

Hasan and Kwon et al. by 20% if k=10. We 

therefore expect our proposed serial multiplier will 

be efficiently applied to hardware implementations in 

the related application areas.
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