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ABSTRACT

Finite field arithmetic is very important in the area of cryptographic applications and coding theory, and it is efficient to use

normal bases in hardware implementation. Using the fact that GF(2"F)

having a type-I optimal normal basis becomes the

extension field of GF(2"), we, in this paper, propose a new serial multiplier which reduce the critical XOR path delay of the
best known Reyhani-Masoleh and Hasan’s serial multiplier by 25% and the number of XOR gates of Kwon et al.’s multiplier by
2 based on the Reyhani-Masoleh and Hasan’s serial multiplier for type-I optimal normal basis.
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I. Introduction

In 1986, Massey-Omura[l] invented the serial
multiplier which has a long path delay with parallel
input and serial output. Agnew et al.[2] proposed a
Sequential Multiplier with Parallel Output(SMPO) by
Rec-

ently, Reyhani-Masoleh and Hasan[3,4] proposed a

improving Massey-Omura’s serial multiplier.

SMPO with lower area complexity and path delay
than that of Agnew et al. In 2004, Kwon et al[5]
proposed a SMPO improving that of Agnew et al

whose path delay is unchanged and area complexity
is equal to or higher than that of Reyhani-Masoleh
and Hasan according to type-Il or otherwise. On the
other hand, Yang et al.[6] proposed a SMPO which
has the same path delay as that of Kwon et al. by
reconstructing the multiplication matrix of Reyh-
ani-Masoleh and Hasan over type-II optimal normal
basis. It is well known that if 8 is not a divisor of
m and GF(2") has a type-k Gaussian normal basis,
where m odd, then there is a Gaussian normal basis
of type-k in GF(2") and especially if GF(2") is of
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type k, then GF(4m+1)" =<2>[7]. And many of the
finite fields GF(2"), m < 2000, having Gaussian
normal bases of type-Il, VI, X or XII satisfy the
condition GF(mk+1)" =<2> according to Standard
P1363[5], ANSI X9.63[8] if $m$ is odd. The
multipliers for many of finite fields GF(2") thus can
be constructed by using the multipliers for the
extension field GF(2"*) with type-l optimal normal
basis based on Reyhani-Masoleh and Hasan. In 2005,
Kim et al.[7] proposed a serial multiplier for type-IV
Gaussian normal basis by embedding GF(2") into
the extension field GF(2"*) with typel optimal
normal basis. Moreover, most of cryptographical
applications including ECC are mainly implemented
over GF(2") for odd prime $m$. Therefore, in this
paper, m is regarded as odd because of the facts
above, and using the fact that GF(2") having type-k
Gaussian normal basis is a subfield of GF(2"")
having a type-I optimal normal basis if GF(mk+1)"
=<2> and m odd, we propose a new architecture for
SMPO which transforms the Gaussian normal basis
multiplication in GF(2") into the type-l optimal
normal basis multiplication in GF(2"*) based on
Reyhani-Masoleh and Hasan's SMPO over GF(2™)
having a type-k Gaussian normal basis. Our SMPO
reduce the XOR critical path delay of the serial
multiplier of Reyhani-Masoleh and Hasan by 25%
and has the same critical path delay as that of
Kwon et al. if k=4, and reduce the XOR critical path
delay of those of Reyhani-Masoleh and Hasan and
Kwon et al. by 20% if k=10.

Il Type -k Gaussian Normal Bases
Multipliers

It is well known that there is always a normal
basis for the finite field GF(2") over GF(2) for any
positive integer 1[5,9]. Multiplications in finite fields
are explicitly discussed in [10] and the method for
representing an element of GF(2™) as an element
of GF(2), where n=mk is introduced in [7]. We, in
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this section, propose a new multiplier modifying the
Reyhani-Masoleh and Hasan [3,4]'s multiplier. We
use two notations ((i))=i mod m and <<i>>= I
mod n from now on. Let GF(2") be a finite field
generated by a AOP and v

be a root of the AOP z"+z" '+ -4z +1, then
v generates the type-l optimal normal basis. In this

142 where i=1,2,

case, n becomes even and 4, = vy
-+, v=n/2, since 3=r. We then have the following

lemma since ~y is a root of the AOP.

Lemma 1(Confer [11])

9" n
1< 21,
v 2

6; = n=l
122 *yz,v=n/2,
Jj=0

13

where k; satisfies the congruence 2’ +1 = 2" mod
n+l.

Reyhani-Masoleh and Hasan[12]
following lemma by substituting all the entries of

proved the

the multiplication matrix M=(ﬁ21+2/) by the elements

of the form ﬂw, 0 <j <n-1.

Lemma 2(Confer [4])

Let GF(2")be a finite field having a type-l
optimal normal basis, v a generator of the optimal
normal basis, AB in GF(2"), C=AB and g ={0,1 }.
Then

— v—1 n—

n—1 1 X
2/ 2/\2"
C:Ea‘<<j7g>>b<<j*g>>’y +Z(Zmp'¥ )T+
j=0 i=1 j=0
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" :{ajb<<i+j>>+a<<i+j>>bj ifg=1
Jot

(aj+a<<7‘,+j>>)(bj+b<<71+j>> ifg=0.

lll. A New Serial Architecture for the Type
k Gaussian Normal Basis Multiplier

Let mk be positive integers, n=mk, n+l prime
such that GF(n+1)"= <2> Since m is odd, k
should be even. Now, We like to extend the
elements AB €GF(2™) to the
GF(2") with respect to typel optimal basis and
then construct a new multiplier for the finite
subfield GF(2") to calculate C=AB modifying
Reyhani-Masoleh and Hasan multiplier described in

elements in

section 2. For the later, we now define an exponent.
Definition 1. Suppose that n=mk, n+l prime,
GF(n+1)"= <2> and k; is the
exponent defined in Lemma 1. For 1 <j, <
u=(m-1)/2 and i €{i,, m-i,, mtiy, -, km/2 -i},

we will define 6, as follows.

b {((k )),i = i;modn,
! ((k +Z())) { =—20modm

Then we have the following.

Theorem 1. Assume that GF(2") has a Gaussian
normal basis of type k, n=mk, GF(n-ﬁ-l)* =2> g
€{0,1} and u=(m-1)/2. If AB are belong to GF(2™)
and C is the product of A and B, then

m—1 . U k/2—1
C= ZA((J'*V (Gi—9)) no +E EZ’“U
ji=0 Jj=0 i, =0 w =0
2H”m‘ k/2 H .
+ E a )%, where
w=1

R {AJB«m)) T A Bifg=1,
Jst (Aj‘i‘A((,-Jrj)))(Bj‘,’B(’J” )1fg 0.

proof) Without loss of generality, we prove the
theorem for g=1. Let AB € GF(2")c GF(2").
Then

—1n—1

C=AB= Ea<<] Lob<<j—1>4 +E Erﬂ

i=1 j=

k

#)?, v=(k/2)m and
a; :A((m,bj :B((m,o < j<mn—1. Therefore we
calculate only A,5; for i=0,1,2, ---, m-1. Next, if
i=wm, 1 <w < k/2, then

Tig =abocivys Faccjrinh = A Byt
A+ By =0-
Lastly,
A B z+]

x]z ab<<L+]>>+a<<J+z>>j

A+ B = TGy,
Therefore, for 1 < i <(m—1)/2

—1lm—1 o gt
Exm S5 Zrmﬂ
t=0j, =0 Jo=
Thus,
v—1 n— —1 m—1
S5, =58,
le/y - x]n [
=1 j=0 i=1j=
—1lv—1
I3
Jo=0i=10

For 1 <i,<u=(m-1)/2, we divide is into two
classes as follows.
1) i= wm + 4y, 0<w<k/2 -1,
2) i= wm - {;, 0=w=<k/2,
For (1),
Lii = Ljwm+i,
=ab. . jrwmtip» T

+ A

A< jrwm+i, »b;

B((jﬂg ((G+iy)) ((j))

For (2),

x xT

Ji Jwm—i,

=a’jb<<j+wmfi(, > +a<<j+wmfi[, >>bj

=A)B-i) T AG-i By
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Therefore,
m—1 o m—1 u k/2—1
Cc= EA((j*g (G—9)) Y +E Ex]?u
Jj=0 J=0 ig= w=0
. k/2 n v
+Y 57 )n
w=1
This completes the proof.
From Theorem 1, if
u  k/2—1 0,
G(A B) ] g ﬁ+12—0 1120/8
k/2 0.
68,
w=1
then
C ((G;er 1+Cr\;",2)2+'“+01)2+67}],
where G, ,(A4,B) =G, _,(A4* | B* ).

. 2/ . .
Moreover, since (3° appears k times for each j,

there can occur at most kutl terms. However, that

[127 appears twice for each 4, means the same value
is added
neglected. Consequently, the number of XOR gates

twice. Therefore such terms can be

of the serial multiplier is

=1+ 2 N,
where
:{1ifg=1,
T 2ifg=o0.
And if we set [=MaxM;+1,5=0,---m—1,
where

M = |{wm +iglé),

i =5,0 < w < k/21+{wm —i

wm—+1i,

=j,1 < w < k/2}|+, where

wm—1,

:{hfj:o,
0ify =0,
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then [ determines the critical path delay of the
XOR gates. To reduce the value of 1, we need the
following,.

Corollary 1. Assume that GF(2™) has a typek
Gaussian normal basis and n=mk,

GF(n+1)"=<2>. If AB € GF(2") c GF(2")
then

Jo

27\ 27
Bjri-gpf )

<7Z

J+7u 9))
j=0
m—1 u ow W k/2—1 20“”_,},,” o
Ex(7+] 1', Eﬁ +(Zﬂ ) 7
=0 iz =1 K w= w=0
where

AB syt A+ Bifg=1
T~ (A + A1) )(B]BW )ifg=0.
proof) If we perform j, -fold right cyclic shift on

each basic element 5* appeared in C in Theorem 1
for each i,, then

m—1 m—1 u k/2—1
— 2/ N
0= Y (A B ) (M, (X
=0 Jj=0 i, =0 w=0
K2 Cunois S,

& “+Zﬁ ))?

Substitute the value of [ which has earlier
derived and matches the bits, then we obtain the
result.

Therefore if we define

’ 2"
G (A.B) = Agej, - Big+i-4))P

+3r

(Gi+4)) 7u
iy
k/2—1 S k/2—1 S
X5 +XNs )
w=0 w=0

C=((G? ,+ G, ) ) +-+G' ) +G),
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i1 t—1

where G ,B? ) by

Corollary 1.

m*t(A7B) = G/77171A2

Let !’ :]l/[aav]l/fj-l—lJ:0,“-7m—17 where
M ;= {wm+iglo +j;, =40 < w < k/2)1+

wm+1i,

{wm =6, ; =31 <w=k/2}.

Then the process of calculating C in Corollary 1

is as follows. Firstly, for each i, we seek for jj“
such that I’

becomes to be optimal and choose j, being
different from I'. Next, G;(4,B) is obtained by j,
-fold and j, fold right shift of the first term and the
second term respectively in the equation of defining
G}(A,B). Lastly, C is calculated by ;s and thus
XOR path delay for calculating C can be reduced to
[ Togyl" 1

determined by .

. Therefore the critical path delay is

IV. Optimization

In implementing our proposed multiplier, for a
fixed 1<¢5<u=(m-1)/2 if some
0, i=iy,

m— iy, m+1y---, km/2-i; in

Theorem 1 are the same, then so are the outputs of

,829’. Therefore the result is not changed if we
discard them. So we can reduce the number of XOR
gates and path delay. In this regard, the number of
XOR gates and path delay can be reduced by
confirming  whether the values of ;s coincide for
some i. In some special type of Gaussian normal

basis, we have the following notable result.

Lemma 3( Confer [7], Lemma 4 )
odd, 4m+1

GF(4m+1)*=<2>. Then one of k; =ky+tu

mod m or k; = ky+u mod m

Assume that m prime and

holds for u=(m-1)/2 if, in GF(4m+1) =<2>,
{2” +1=2"
m—u by OF
om 41 =2
{2m+u + 1= 2k3
22m —u +1= 2k4

On the other hand, if GF(2™) have a typeIV
Gaussian normal basis and m is odd, then either
0,=10 u=(m-1)/2
(confer [7]).

Therefore, if GF(2™) have a type-IV Gaussian
u=(m-1)/2,

by Lemma

m—u or 9m +u =927n —u for

normal basis and m be odd, then for
either 6, =6, _, =90
3. So, for g=1, there need M=(5m-7)/2 XOR gates
and thus there needs M=(7m-13)/2 XOR gates for
type-VI Gaussian normal basis.

or 0

m+u 2m—u

V. Complexity

In this chapter, we calculate the complexities of
the serial multiplier constructed in Theorem 1 and
Corollary 1 of section 3.

Ttheorem 2. The maximum complexities of the
multiplier of Theorem 1 and Corollary 1 are

a) m AND gates, (k+1)(m-1)/2 +1 XOR gates if
g=l and (m+1)/2 AND gates, (k+2)(m-1)/2 XOR
gates if g=0 and

b) Ty + 1+ [logl 1 ) Ty
where 7'y, Ty are AND delay and XOR delay
respectively.

proof)
For a), if g=1, then there need one AND gate in

path delay,

order to calculate A; | B; , and the total number

of AND gates to generate x., is m-1 since, for

j’i()
each 1 <i,< u=(m-1)/2, there need two AND gates

in order to calculate x; ; . Therefore we need a total
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number of m AND gates. Since the number of XOR
gate to generate each z; i is 1 for

each 1< i < u=(m-1)/2, there need a total of
(m-1)/2 XOR gates. 1+k(m-1)/2 to
calculate G’].(A,B)2+Gj,1(A,B) except
and thus we need a total of (k+1)(m-1)/2+1 XOR
gates. By the way, for i, = u, two 01-0 coincide by

There need

Lemma 3. Therefore the optimized total number of
XOR gates is (5m-7)/2. For g=0, there need (m-1)/2
and 1 AND gates to generate i and A;B;

respectively, and thus we need a total of (m-1)/2
AND gates. Similarly, there need a total (k+2)(m-1)/2
XOR gates in total in case g=0.

For b), it is immediately that both of the
number of path delay of AND gates and that of

XOR gates for calculating x; ; are equal to 1. Thus
the critical XOR path delay is 1+ [ logyl | since
the number of upper bound of the number of XOR
basic element ﬂw in

is 1. This

gates to
G']-(A,B)2 + G (A,B) except x

completes the proof.

generate the

AX)

VI. Conclusion

Using the fact that GF(2™) having typek

Gaussian normal basis is a subfield of GF (2mk)
type-1 normal basis if

GF(mk+ 1)* =<2> and m odd, in this paper, we
proposed a new architecture for SMPO, which

having a optimal

transforms the Gaussian normal basis multiplication
in GF(2™) into the type-I optimal normal basis
multiplication in  GF(2™") based on Reyhani-
Masoleh and Hasan'’s SMPO over GF(2™) having
a type-k Gaussian normal basis. We can confirm that
XOR critical path
delay of the serial multiplier of Reyhani-Masoleh and
Hasan by 25% and has the same critical path delay

our proposed SMPO reduce the
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as that of Kwon et al. if k=4, and reduce the XOR
critical path delay of those of Reyhani-Masoleh and
Hasan and Kwon et al. by 20% if k=10. We
therefore expect our proposed serial multiplier will
be efficiently applied to hardware implementations in
the related application areas.
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