• 제목/요약/키워드: 접합에너지

검색결과 607건 처리시간 0.029초

$90^{\circ}$ 접합맨홀에서의 에너지손실 저감 방법 분석 (An Analysis for Reduction Method of Head loss at Manholes with a $90^{\circ}$ Bend)

  • 김정수;최현수;윤세의
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.395-399
    • /
    • 2009
  • 현재 계획 또는 설계단계에서 수행되고 있는 우수 관거 시스템의 수리계산에서는 연결관의 마찰손실만을 감안하여 수행하고 있으며, 맨홀에서의 수두손실은 고려되지 않는 실정이다. 특히 과부하 $90^{\circ}$ 접합맨홀 내부에서의 복잡한 흐름 현상에 의하여 발생하는 에너지 손실은 일반적인 직선 연결 맨홀에 의해서 발생하는 에너지 손실과 큰 차이를 보이지만 현재 우수 관거 설계 및 관리에서는 이를 대부분 고려하지 않는 실정이다. 또한 직선으로 연결된 맨홀보다 $90^{\circ}$ 접합 맨홀은 유수교란에 의한 에너지 손실이 커지므로 이에 대한 $90^{\circ}$ 접합 맨홀에서의 에너지 손실 저감에 대한 연구가 필요하다. 그러므로 본 연구에서는 합류 맨홀 중 $90^{\circ}$ 접합 맨홀에서의 에너지 손실 저감 방법의 분석을 위하여 하수도시설기준(환경부, 2005)의 표준 1호(원형), 특 1호(사각형) 맨홀을 각각 축소 제작하고, 수리실험 장치를 제작하여 수리 실험을 실시하였으며, 실험결과를 benching을 사용하지 않은 $90^{\circ}$ 접합 맨홀의 평균 손실계수를 산정한 윤세의 등(2008)의 실험 결과와 비교하였다. 접합위치를 변경한 원형 맨홀 CASE B에서의 평균 손실계수는 1.1로 산정되어 CASE A의 1.6보다 크게 감소하였다. 접합위치를 변경한 사각형 맨홀 CASE B에서는 1.5로 산정되어 손실계수의 감소폭이 적었으나, 접합위치를 변경하고 side benching을 설치한 CASE C에서의 평균 손실계수는 1.1로 산정되어 CASE A의 사각형 맨홀의 손실계수 1.6에 비하여 큰 감소 효과를 나타내었다. 따라서 $90^{\circ}$ 접합 원형 맨홀에서는 접합 위치를 변경시킨 CASE B의 형태를 사용하고, 사각형 맨홀에서는 접합 위치를 변경시키고 side benching을 설치한 CASE C의 형태를 사용하면 우수 관거 시설의 배수능력을 향상 시킬 수 있을 것으로 판단된다.

  • PDF

휨을 고려한 칩 패키지의 EMC/PCB 계면 접합 에너지 측정 (Measurement of EMC/PCB Interfacial Adhesion Energy of Chip Package Considering Warpage)

  • 김형준;안광호;오승진;김도한;김재성;김은숙;김택수
    • 마이크로전자및패키징학회지
    • /
    • 제26권4호
    • /
    • pp.101-105
    • /
    • 2019
  • 칩 패키지에는 생산 공정 및 운송, 보관 과정에서 발생하는 외부 환경 변화로부터 인쇄 회로 기판(printed circuit board, PCB)을 보호하기 위해 에폭시 몰딩(epoxy molding compound, EMC)이 사용된다. PCB와 EMC의 접합 신뢰성은 제품의 품질 및 수명에 중요한 요소이며 이를 보증하기 위해 제품 설계 및 생산 단계에서 그 접합 에너지를 정밀하게 측정하고, 이에 영향을 끼치는 요소를 통제하여 공정을 최적화 시켜야 한다. 본 논문은 이중 외팔보(double cantilever beam, DCB) 시험을 이용하여 휨(warpage)이 있는 칩 패키지의 EMC와 PCB의 계면 접합 에너지를 측정하고 보정하는 방법에 대해 소개한다. DCB 시험법은 이종 재료의 계면 접합 에너지를 측정하는 전통적인 방법이며 정밀한 접합 에너지 측정을 위해 평평한 기판이 필수적이다. 그러나 칩 패키지는 내부 구성 요소들의 열팽창 계수 차이로 인해 휨이 발생하기 때문에 평평한 기판을 제작하여 정밀한 접합 에너지를 측정하는데 어려움이 있다. 이를 극복하고자 본 연구에서는 휨이 있는 칩 패키지로 DCB 시험법을 위한 시편을 제작하고, 기판의 복원력을 보정하여 접합 에너지를 계산하였다. 보정된 접합에너지는 동일 조건에서 제작된 칩 패키지 중 휨이 없는 시편을 선별하여 측정한 접합 에너지와 비교, 검증하였다.

낮은 에너지의 As<+>(2) 이온 주입을 이용한 얕은 n+-p 접합을 가진 70nm NMOSFET의 제작 (70nm NMOSFET fabrication with ultra-shallow n+-p junctions using low energy As<+>(2) implantations)

  • 이종덕;이병국
    • 대한전자공학회논문지SD
    • /
    • 제38권2호
    • /
    • pp.9-9
    • /
    • 2001
  • Nano-scale의 게이트 길이를 가지는 MOSFET소자는 접합 깊이가 20∼30㎚정도로 매우 얕은 소스/드레인 확장 영역을 필요로 한다. 본 연구에서는 $As₂^ +$ 이온의 10keV이하의 낮은 에너지 이온 주입과 RTA(rapid thermal annealing)공정을 적용하여 20㎚이하의 얕은 접합 깊이와 1.O㏀/□ 이하의 낮은 면저항 값을 가지는 $n ^+$-p접합을 구현 하였다. 이렇게 형성된 $n^ +$-p 접합을 nano-scale MOSFET소자 제작에 적용 시켜서 70㎚의 게이트 길이를 가지는 NMOSFET을 제작하였다. 소스/드레인 확장 영역을 $As₂^ +$ 5keV의 이온 주입으로 형성한 100㎚의 게이트 길이를 가지는 NMOSFET의 경우, 60mV의 낮은 $V_ T$(문턱 전압감소) 와 87.2㎷의 DIBL (drain induced barrier lowering) 특성을 확인하였다. $10^20$$㎝^ -3$이상의 도핑 농도를 가진 abrupt한 20㎚급의 얕은 접합, 그리고 이러한 접합이 적용된 NMOSFET소자의 전기적 특성들은 As₂/sup +/의 낮은 에너지의 이온 주입 기술이 nano-scale NMOSFET소자 제작에 적용될 수 있다는 것을 제시한다.

수치모형을 이용한 과부하 $90^{\circ}$ 접합맨홀에서의 손실계수 산정 (An Estimation of Head Loss Coefficients at Surcharged Manhole with 90 Degree Bend Using Numerical Model)

  • 김정수;임가희;한정석;윤세의
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.165-165
    • /
    • 2011
  • 현재 계획 또는 설계 단계에서 수행되고 있는 관거 시설의 수리계산에는 연결관 내에서의 마찰손실만을 감안하여 수행하고 있으며, 맨홀에서의 에너지 손실은 고려되지 않는 실정이다. 그러나 연결관 내부와 맨홀의 내부는 여러 가지 수리학적 조건이 다르므로 에너지 손실이 발생하게 된다(최원석과 송호면, 2002). 더욱이 직선으로 연결된 중간맨홀보다 유입관과 유출관이 $90^{\circ}$의 각도로 접합된 합류맨홀은 연결 구조상 유수교란에 의한 에너지 손실이 커질 것으로 예상됨에도 불구하고 현재 실무에서 우수 배수시설의 설계 시 직선 연결맨홀과 $90^{\circ}$ 접합맨홀의 손실을 구별하지 않고 사용하고 있는 실정이다. 그러므로 $90^{\circ}$ 접합맨홀에서 우수관거 시스템의 우수 배제 능력을 증가시켜 도심지의 침수를 방지하기 위한 관거시설의 적정 설계 기준이 필요하며, 합리적인 설계 기준을 제시하기 위하여 $90^{\circ}$ 접합맨홀 내에서의 수두 손실을 분석할 필요가 있다. 본 연구에서는 수리모형 실험의 물질적 및 시간적 한계를 극복하기 위하여 일반적으로 3차원 유체거동의 특성분석에 많이 사용되는 Fluent 6.3 모형을 이용하여 과부하 $90^{\circ}$ 접합맨홀에서의 흐름특성을 수치모의 하였으며, 맨홀 내 손실수두의 변화를 계산하여 손실계수를 산정하였다. 맨홀 및 접합 관거의 기하 모형의 격자망은 수치해석의 안정성 확보를 위하여 그림 1과 같이 6면체 격자로 구성하였다. 또한 $90^{\circ}$ 접합맨홀에서 급격한 와류에 의해 발생하는 에너지 손실을 저감하기 위하여 $90^{\circ}$ 접합맨홀의 내부 형상 및 접합 조건을 변화시켜 손실계수를 산정하였다. 수치모형의 적용 결과 맨홀 내에서의 유속변화, 수심변화 및 압력변화에 대해서는 수리모형 실험 결과와 유사한 경향을 나타내고 있으며, 수치모형에 의하여 산정된 $90^{\circ}$ 접합맨홀에서 에서의 손실계수 값과 수리모형에 의하여 산정된 손실계수 값이 거의 유사하게 나타났다.

  • PDF

반복하중을 받는 철골보 접합부의 거동 (Behavior of Steel Beam Connections under Cyclic Loading)

  • 이승준;김상배
    • 한국지진공학회논문집
    • /
    • 제3권4호
    • /
    • pp.23-32
    • /
    • 1999
  • 본 연구에서는 반복하중을 받는 H형강보 접합부의 거동을 실험적인 방법으로 조사하였다. 본 연구의 목적은 H형강보 접합부의 이력거동에 강제의 특성과 스캘럽의 형태가 주는 영향을 조사하는 것이다 5개의 접합부 시험체를 제작하여 반복하중을 재하면서 실험을 수행하였다. 보 접합부에서의 하중-회전변형 곡선을 얻었으며 접합부의 변형능력과 에너지 소산능력을 상호 비교하였다. 강재가 SS400인 시험제는 충분한 변형능력과 에너지소산능력을 보였으나 강재가 SM490인 시험체는 취성적인 파괴를 보였으며 변형능력이 작았다. 접합부 스캘럽의 형태는 접합부의 거동에 영향을 주지않았다.

  • PDF

폭발용접의 원리와 응용 (The Principle and Application of the Explosive Welding)

  • 성상철;심상한;이병일
    • Journal of Welding and Joining
    • /
    • 제15권6호
    • /
    • pp.13-23
    • /
    • 1997
  • 폭발용접은 화약의 폭발에 의한 충격 에너지를 이용하여 금속을 접합시키는 방법으로서 화약의 폭발에 의해 생기는 순간적인 높은 에너지를 이용하는 접합법이다. 1944년에 처음으로 폭발용접의 기술적, 상업적인 이점으로 인해 수요가 증가하고 있는 실정이다. 적용 예는 거대한 판재의 cladding을 포함하여 cladding nozzle, tube 와 tubeplate의 접합, pipe와 pipe의 접합등에 사용되고 있다. 종래의 용접법으로는 용접이 곤란하거나 불가능한 것으로 생각되었던 이종금속에 대해서는 적용이 가능하 고, 용접에 의한 열영향을 받지 않으며 용접 속도가 대단히 빠르다는 잇점이 있다. 또한 용접의 차이가 커서 접합이 곤란한 금속을 폭발용접하면 이음부는 충분한 강도를 가지면서 용이하게 접합할 수 있는 것이 큰 특징이다. 대부분의 금속은 폭발용접이 가능하지만 폭발의 충격에 의해서 균열이 발생되기 쉽고 주철과 같이 취약한 금속 및 Mg을 함유한 알루미늄 합금(순 알루미늄과는 접합 가능함)등은 이 용접법을 사용하기 는 곤란하다. 시공상의 특징으로는 특별한 기계 장치가 필요하지 않고 모재가 판재 혹은 파이프상이면 모재 두께에 제한 받지 않고, 어떠한 형태와도 가능하기 때문에 다품종, 소량생산이 가능하다. 한편 접합시에 화약을 사용하기 때문에 취급에 있어서 주의를 요하고 큰 폭발음 때문에 용접장소의 제한을 받는다는 것이다.

  • PDF

직접접합 질화규소/산화규소절연막 이종실리콘기판쌍의 제조 (Direct Bonding of SiN/SiO Silicon wafer pairs)

  • 이상현;서태윤;송오성
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2001년도 추계산학기술 심포지엄 및 학술대회 발표논문집
    • /
    • pp.169-172
    • /
    • 2001
  • 다층 MEMS구조의 기초기판쌍 소재로 쓰일 수 있는 Si∥SiO₂/Si₃N₄∥Si 기판쌍의 직접접합 가능성을 확인하기 위해서 2000Å-SiO₂와 500Å-Si₃N₄층을 가진 직경 10cm의 실리콘 기판을 각각 친수성 및 소수성 표면세척을 하고 청정분위기에서 경면끼리 가접을 실시하였다. 가접된 기판쌍을 통상의 박스형 전기로를 이용하여 400, 600, 800, 1000, 1200℃ 범위에서 2시간 동안 가열하여 접합을 완료하였다. 완성된 기판쌍을 적외선분석기를 이용하여 접합면적을 확인하였고, 면도칼 삽입법으로 접합계면에너지를 측정하였다. 실험온도 범위 내에서 Si∥SiO₂/Si₃N₄∥Si 기판쌍은 1000℃ 이상에서 접합계면에너지는 2,344mJ/㎡을 나타냈으며, 이는 기존의 Si/Si의 동종접합기판쌍과 동등한 수준의 접합강도로서 부가가치가 큰 새로운 조합의 기판쌍 제조가 가능하였다.

다이오드 레이저를 이용한 이방 전도성 필름(ACF) 접합

  • 류광현;서명희;남기중;곽노흥
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2005년도 추계 학술대회
    • /
    • pp.45-48
    • /
    • 2005
  • 디스플레이 모듈에서 hot plate를 이용한 이방 전도성 필름(ACF: Anisotropic Conductive Film) 접합의 공정을 고출력 다이오드 레이저를 이용한 공정으로 대체하였다. 다이오드 레이저를 이용한 ACF 접합은 공정 시간을 기존보다 줄일 수 있으며 평탄도 및 응용성에 있어서 hot plate 공정보다 뛰어나다. 또한 다양한 샘플에도 지그 및 레이저광의 자유로운 변형으로 응용성이 매우 뛰어나다. 에너지 분포가 고른 선광을 이용하여 ACF 접합을 수행하였다. 레이저 에너지 밀도 $100\;W/cm^2$, 압력 20 kg, 레이저 조사시간 4초 이상에서 800 gf/cm 이상의 인장력을 얻을 수 있었고 기존의 공정 시간을 두 배 이상 단축하였다.

  • PDF

유한요소법을 이용한 강-티타늄 이종소재의 폭발 용접조건 해석 (On the Explosive Welding Characteristics of Steel-Titanium Dissimilar Materials Using finite Element Method)

  • 김청군;김명구;심상한;문정기
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.825-831
    • /
    • 1996
  • 폭약의 폭발시 발생되는 초고압 충격 에너지를 이용한 강-티타늄 이종재질의 폭발접합 특성을 한요소기법에 의하여 실험적인 방법으로는 해석하기 어려운 미시적 관점의 접합조건을 해석하였다. 서로 다른 이종재질간의 접합에서 HI-DYNA2D 유한요소 코드를 이용한 계산결과에 의하면 충돌부근에서의 압력크기는 기존에 수행하였던 Oberg등의 수치적 해석결과와 잘 일치하고 있다. 한편, 폭약이 정상적인 폭발에너지를 발생시키기 위해서는 폭약이 30mm이상의 두께를 유지하여야 하며 50mm이상의 폭약두께는 폭접소재의 접합에 별다른 영향을 주지 못하고 있다. 즉, 폭약을 적게 사용하면 접합에너지가 부족하여 접합이 약하고, 폭약이 과도하게 많게되면 폭약의 손실이 많이 되므로 폭발용접 설계시 이들의 양을 미리 명확하게 예측하는 것이 대단히 중요함을 제시하였다. 한 평행한 상태에서 강-티타늄 이중소재를 접합할 경우의 이격거리는 3-5mm로 유지하는 것이 가장 양호한 접합상태를 얻을 수 있는 것으로 해석된다. 본 연구에서는 폭발용접의 접합특성 해석과 이에 강-티타늄 이종재질의 접합 설계조건을 실험적인 방법으로 구하지 않고, HI-DYNA2D 코드를 활용한 반복작업을 통하여 접합조건의 설계데이터를 충분히 얻을 수 있음을 확인하였다.

데칼법으로 제조된 고분자 연료전지용 전극 막 접합체의 성능평가 (enhanced performance of Membrane electrode assembly made by decal method)

  • 류성관;박석희;윤영기;이원용;김창수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.65-68
    • /
    • 2007
  • 전극 막 접합체를 만드는 방법 중 연속식 공정으로서의 데칼법의 장점은 제조공정의 단순화와 두께 균일성 그리고 대량생산 등을 그 예로 들 수 있다. 본 실험에서는 코터를 이용해 전극 막 접합체를 만들기 위해 높은 점도의 촉매 슬러리를 제조하였다. Johnson Mattey 사의 HiSPEC 40 wt% Pt/C 촉매와 Dupont사의 20 wt% Nafion Solution 그리고 물을 이용하여 촉매 슬러리를 제조한 후 코터를 이용하여 데칼법으로 전극 막 접합체를 제조하였다. 완성된 전극 막 접합체의 성능 평가를 실시하였으며 상용화된 전극 막 접합체와 그 특성을 비교 분석을 실시해보았다.

  • PDF