• Title/Summary/Keyword: 접합부 인장강도

Search Result 127, Processing Time 0.026 seconds

Experimental Study on the Tensile Behaviors of Stud Connection with Hanger (행거로 보강된 스터드 접합부의 인장거동에 관한 실험적 연구)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.231-238
    • /
    • 2004
  • This paper presents the tensile behavior of the stud connection between reinforced concrete(RC) and steel members. Hanger reinforcements are placed around the studs to transfer the tensile and flexural loads to the opposite side of the concrete member. Eight specimens for the tensile tests are tested with variables, which are the arrangement details of hanger reinforcements, the reinforcing bars, and the embedment length of stud. The results of the tensile tests show that hanger reinforcements are effective to increase tensile strength for stud connections. Hangers and reinforcing bars near stud bolts contributed to the reduction of brittle failure. From the evaluation on the tensile strength by previous design guidelines, it was shown that CCD (Concrete Capacity Design) method was more suitable for estimation of test strength.

Prediction Models for the Stiffness and the Strength of a Double Angle Connection Subjected to Tension (축방향 인장력을 받는 더블앵글 접합부의 강성 및 강도 예측모델)

  • Yang, Jae Guen;Lee, Gil Young;Cheon, Ji Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.201-210
    • /
    • 2007
  • Double-angle connections should be designed with enough stiffness and strength to properly resist various applied loads. Therefore, structural engineers should be able to predict some influential variables and take their effects into account in design. This study was performed to establish the effects of the number of bolts and bolt gage distance on the stiffness and strength of a double-angle connection under tension. Six experimental tests were conducted to describe the effects of these variables by comparing load-displacement relationship curves. In addition, two prediction models were proposed to estimate the initial stiffness and the maximum allowable tensile load based on the results of experimental tests. In the development of these prediction models, the effect of prying action was considered.

Tensile Behavior of Stud Bolt Connections (스터드 볼트 접합부의 인장 거동에 관한 연구)

  • 이태석;김승훈;서수연;이리형;홍원기
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.321-328
    • /
    • 2001
  • This paper presents the tensile behavior of stud connections installed between reinforced concrete and steel members. Eight specimens are tested to verify the factors influencing the tensile behavior of the connection. Major variables considered in the test are the reinforcement ratios of concrete member and connection details. Test results indicate that the reinforcing bars near stud bolts contribute to the increase of the tensile strength of the member as well as to the reduction of brittle failure. It is shown that C-type or U-type connection has relatively high ductility. From the evaluation on the tensile strength of test results including those of peformed by previous researchers, it was shown CCD (Concrete Capacity Design) method overestimated the strength. In this paper, the reduction factor of 0.75 ø instead of ø is suggested for design purpose of the stud connection.

A Study on the Joint Tensile Strength of EVA Waterproofing Sheet According to Hot Air Welding Speed and Chemical Attack in Low Temperature (저온 환경에서의 열풍융착 속도별 화학적 침식이 EVA 방수시트의 접합부 인장강도에 미치는 영향에 대한 연구)

  • Park, Jin-Sang;Choi, Su-Young;Park, Wan-Goo;Jung, Hae-Choon;Kim, Byoung-Il;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.320-326
    • /
    • 2017
  • This study is based on the hot air welding application method of EVA sheet to test the tensile strength performance changes due to the hot air welding speed, temperature and chemical attack. For the parameters of the study, the hot air welding method that directly heats the overlap between the sheets and the adhesion surface was controlled, and the maximum temperature for application was set to $20^{\circ}C$, $0^{\circ}C$, $-5^{\circ}C$, $-10^{\circ}C$. According to the results of the testing, the tensile strength of the overlap area was the highest between the temperatures of 20 at 5~6m/min and between the low temperatures at 3~4m/min of hot air welding speed.

Characteristics of Residual Stress in welds Composed of Similar or Dissimilar Steels (동종강재 및 이종강재 용접접합부의 잔류응력 특징)

  • Chang, kyong Ho;Lee, Chin Hyung;Lee, Sang Hyong;Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.241-250
    • /
    • 2003
  • This study, investigated the characteristics of residual stress in weldis composed of similar or dissimilar steels, are investigated byusing 3three-dimensional thermal elasto-plastic FEM analysis. The results showed that for the groove welding of the similar steels, increasedthetensile strength of the steels (POSTEN60

Cyclic Loading Test for Composite Beam-Column Joints using Circular CEFT Columns (콘크리트피복 원형충전강관 기둥-강재보 접합부에 대한 반복하중실험)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.411-422
    • /
    • 2017
  • In this study, to investigate the seismic performance of beam-column joints using concrete-encased and -filled circular steel tube(CEFT) columns, two types of tests were performed: (1) column - flange tension test and (2) beam - column joint cyclic load test. In column - flange tension test, test parameters were concrete encasement and connection details: flange width and strengthening rebar. Five specimens were tested to investigate the load-carrying capacity and the failure mode. Test results showed that increase of flange width from 200mm to 350mm result in increase of connection strength and stiffness by 61% and 56%, respectively. Structural performances were further improved with addition of tensile rebars by 35% and 92%, respectively. In cyclic loading test, three exterior beam-column joints were prepared. Test parameters were strengthening details including additional tensile rebars, thickened steel tube, and vertical plate connection. In all joint specimens, flexural yielding of beam was occurred with limited damages in the connection regions. In particular, flexural capacity of beam-column joint was increased due to additional load transfer through tube - beam web connection. Also, connection details such as increase of tube thickness and using vertical plate connection were effective in improving the resistance of panel zone.

The Structural Behavior of Strong Axis Connections by Type of Weak Axis Connection - In Case of Loading Gravity Load - (약축 접합부 형식에 따른 강축 접합부의 구조적 거동 - 연직하중이 작용하는 경우 -)

  • Kim, Sang Seup;Lee, Do Hyung;Ham, Jeong Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.275-284
    • /
    • 2004
  • The behavior of the connection for beam-to-column weak axis connection and its details should be identified. Thus, each element is considered a panel zone, and the horizontal stiffener's presence or absence and position in bracket-type welding connection are used as variables to compare the behavior of strong axis connection and weak axis connection. In this study, the strength of connection is calculated by substituting the simple beam-strengthened vertical stiffeners for connection in the presence of horizontal stiffeners. In the absence of horizontal stiffeners, the strength of connection can be calculated using local flange bending strength considering local web yielding strength, web crippling, and web buckling strength. The results of the theoretical analysis and experiments are compared.

The mechanical properties of welded joint in high strength hot rolled steel for heavy machinary (중장비용 고강도 열연강재의 용접부 특성)

  • Jeong, H.C.;Lee, J.S.;Lee, J.W.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.63-63
    • /
    • 2009
  • 최근 연비 향상 및 배기가스 저감을 위한 친환경 경량 굴삭기에 대한 연구가 활발히 진행되고 있다. 이러한 시도는 굴삭기의 소재의 강도를 490MPa급에서 700MPa급으로 고강도화를 통하여 작업장치의 경량화를 도모하고 있다. 본 연구에서는 중장비용 고강도 열연강재로 재발중인 ATOS70강재의 기본 용접성 및 GMAW 용접부 특성을 검토하였다. 사용한 시험재는 현장시험재인 14~16mmt두께의 ATOS70강재를 사용하였고, 용접경화성 및 저온균열감수성을 평가하였다. 또한 GMAW 용접을 실시하여 용접부의 이음부 특성을 검토하였다. 14mmt 두께의 ATOS70강재의 탄소당량은 약 0.44수준이고, 모재 인장강도는 약 760MPa급 수준을 보였다. 한편 최고경도시험에 의한 용접부 최도경도는 약 300Hv 수준을 보였으며, 경사 y-groove구속시험에 의한 14mmt두께의 한계예열온도는 상온이었다. 한편 GMAW 용접부 인장시험결과 740MPa급 이상의 인장강도를 확보하였고, $-5^{\circ}C$ 용접부 Charpy 충격시험결과 48J 이상의 충격인성을 나타내었다.

  • PDF

Longitudinal Bonding Strength Performance Evaluation of Larch Lumber (낙엽송 소경각재의 종접합 성능평가)

  • Lee, In-Hwan;Pack, Ju-hyun;Song, Da-bin;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.85-92
    • /
    • 2018
  • In order to use glued built up timber beam as a structural member for post and beam construction, it must be possible to manufacture long-span lumber. In this study, the researchers conducted a performance evaluation for longitudinal bonding of lumber (cross-section $89{\times}120mm$) made from larch. The specimens were prepared in six different forms using the longitudinal bonding method. The bonding strength of these specimens was tested through tensile strength tests and bending strength tests. The tensile strength test result of the longitudinally bonded parts was better than that of the double lap specimens. And, the tensile strength value of the scarf specimen was better than that of the hooked scarf specimen. The tensile strength of the GFRP (Glass Fiber Reinforced Plastic) rod insertion bonding specimen was 3.6 MPa, which was the highest. As for the bending strength test result of the longitudinally bonded part, the average MOR (modulus of rupture) of the specimen where a GFRP rod was inserted and bonded measured 29 MPa, while the specimens of other bonded parts showed a MOR no more than 11 MPa. Toughness destruction was observed in specimens where a GFRP rod was insertion-bonded. The rest of the specimens showed brittle destruction. The average MOR strength of the Rod + Lap specimen was 30.5 MPa, which was the highest among all longitudinally bonded specimens. The bending strength of the Rod + Lap specimens showed an effective strength that was 66% of that of the control group which were not longitudinally bonded.

The Tensile Strength at Room Temperature of Brazing Section for Materials used for Liquid Rocket Engine Combustion Chamber (액체 로켓엔진 연소기 사용 재료의 상온 브레이징부 인장강도 특성)

  • 정용현;류철성;최민수
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.73-79
    • /
    • 2003
  • The tensile strength test and the analysis for the section of brazing were performed in the cases of materials used for combustion chamber of regeneratively cooled liquid rocket engine. BNi-2 and BNi-7 based on nickel were used for brazing as filler metal. The properties of material and filler metal were analyzed by tensile strength test and metal microscope for 12 specimens. The tensile-strength of brazing for chrome-copper alloy and other kinds of alloy was higher than that of chrome-zirconium-copper alloy and other kinds of alloy The tensile strength in the case of BNi-2 as filler metal was higher than that of BNi-7 because the wetting property of BNi-2 was better than that of BNi-7.