• Title/Summary/Keyword: 접합부 성능

Search Result 548, Processing Time 0.03 seconds

Development of Connection Details of RC Wale-Steel Beam Joint Subjected to Axile and Shear Load (축력 및 전단력을 받는 RC 띠장-철골 보 접합부의 접합연결재 개발)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.189-196
    • /
    • 2004
  • The RC wale-steel beam stud connection may have smaller moment and shear resistance because the tensile and shear capacity of the studs are limited by the depth of RC beam. Especially, they are subjected to compressive axial load. This paper describes the experimental works to develop the connection details of RC wale-steel beam joints subjected to shear and axial loads. Shear connectors developed in this study are closed C type deformed bar, opened C type deformed bar, and U type deformed bar. From shear test, the shear performance of RC wale-steel beam joint with the developed connectors are compared with the stud connection. Test results indicated that the developed connectors were very effiecive to increase the shear strength.

Experimental Study on Structural Behavior of Joints for Precast Concrete Segment (프리캐스트 콘크리트 세그먼트 접합부의 구조거동에 관한 실험적 연구)

  • Lee, Young-Hak;Kim, Min-Sook;Jung, Bo-Na;Kim, Hee-Cheul;Kim, Kwan-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.59-65
    • /
    • 2009
  • The use of precast concrete segments facilitates quality control and reduces construction cost and period. However, as a construction method it has limited applicability, for it demonstrates structurally disadvantageous behaviors due to stress concentration and large displacement in the joint of assembled segments. This paper proposes a precast segment joint with improved structural performance, and experimentally assesses the structural performance of the proposed joint in terms of crack and failure modes, deformation, maximum load and displacement ductility. In consideration of constructability and structural performance, this paper suggests different types of joint with shear key, post tension and steel rods as variables, and performs a static loading test on them. The test results show that the performance of SGSP specimens is around 84% that of a monolithic specimen in terms of the maximum load, while their ductility behaviors are better than the monolithic specimen. This result confirms the improved structural performance and applicability of the proposed joint.

Hysteretic Behavior and Seismic Resistant Capacity of Precast Concrete Beam-to-Column Connections (프리캐스트 콘크리트 보-기둥 접합부의 이력거동 및 내진성능)

  • Choi, Hyun-Ki;Choi, Yun-Cheul;Choi, Chang-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.61-71
    • /
    • 2010
  • Five half-scale beam-to-column connections in a precast concrete frame were tested with cyclic loading that simulated earthquake-type motions. Five half -scale interior beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including one monolithic specimen and four precast specimens. Variables included the detailing used at the joint to achieve a structural continuity of the beam reinforcement, and the type of special reinforcement in the connection (whether ECC or transverse reinforcement). The specimen design followed the strong-column-weak-beam concept. The beam reinforcement was purposely designed and detailed to develop plastic hinges at the beam and to impose large inelastic shear force demands into the joint. The joint performance was evaluated on the basis of connection strength, stiffness, energy dissipation, and drift capacity. From the test results, the plastic hinges at the beam controlled the specimen failure. In general, the performance of the beam-to-column connections was satisfactory. The joint strength was 1.15 times of that expected for monolithic reinforced concrete construction. The specimen behavior was ductile due to tensile deformability by ECC and the yielding steel plate, while the strength was nearly constant up to a drift of 3.5 percent.

Seismic Performance of Beam-Column Connections for Special Moment Frame Using 600 MPa Flexural Reinforcement (600 MPa 휨 철근을 사용한 특수 모멘트 골조의 보-기둥 접합부의 내진성능)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Choi, Won-Seok;Chung, Lan;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.591-601
    • /
    • 2011
  • An experimental study was performed to evaluate the seismic performance of beam-column connections using 600 MPa re-bars for beam flexural reinforcement. Three full scale specimens of interior beam-column connection and two specimens of exterior beam-column connection were tested under cyclic loading. The specimens were designed to satisfy the requirements of Special Moment Frame according to current design code. The structural performance of the specimens with 600 MPa re-bar were compared with that of the specimen with 400 MPa re-bars. The test results showed that bond-slip increased in the beam-column joint. However, the load-carrying capacity, deformation capacity, and energy dissipation capacity of the specimens with 600 MPa re-bar were comparable to those of the specimens with 400 MPa re-bars.

Developments of Advanced Connection Type for Improvements of Mixed Structures(I) : 3D Nonlinear Analysis of the Various Connection Types for Deriving Advanced Connection Type (혼합구조의 성능 향상을 위한 개선된 접합방식의 개발 (I) : 개선된 접합방식을 도출하기 위한 3차원 비선형 해석)

  • Yun, Ik Jung;Huh, Taik Nyung;Kim, Moon Kyum;Cho, Sung Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.89-94
    • /
    • 2008
  • The problem of interaction between the structures interconnected at discrete points as like composite structures, has a attracted considerable attention for a prolonged period of time. Recently, mixed structures are applied for overcoming structural limits by developed countries. In this paper, advanced connection type of mixed structures are presented by numerical approach. Also it is performed on extensive literature review from theoretical method to numerical analysis. For analysing behaviors of mixed structures according to connection type, 2 different connections and 1 reinforced connection are compared by 3D nonlinear numerical analysis. Nonlinear analysis of mixed structures is carried out by utilizing contact elements of a general purpose structural analysis computer program(ABAQUS). By using 6 criteria, each connections are investigated. From this result, proper reinforcing and well designed connection type are proposed. And results also show that the deflections which are induced by discontinuity on mixed structures, has a linear distribution that should decrease as applying proposed connection type.

Seismic Performance of Beam-to-Column Joints with Wedge Connectors (쐐기형 강재 접합장치를 사용한 보-기둥 접합부의 내진성능)

  • Park, Jong Won;Kang, Seoung Min;Hwang, In Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.655-661
    • /
    • 2007
  • A new steel connection method using wedges known as Self-Locking Connector has been developed. In this study, experimental investigation was conducted to verify the seismic performance of steel beam-to-column joints with Self-Locking Connectors. Cyclic-loading tests were performed on two beam-to-column joints with Self-Locking Connectors. The two beam-to-column joint specimens were of the cantilever-type and had the same details. Test results showed that beam-to-column joints with Self-Locking Connectors were able to developa total rotation capacity of 0.06 radian, which is greater than the 0.04 radian required for Special Moment Frames. Moreover, their energy absorption capacity was much greater than that of conventional joints.

Seismic Performance of RC Column-Steel Beam Connections for Large Columns (대형기둥 적용을 위한 철근콘크리트기둥-강재보 접합부의 내진성능)

  • Park, Hong Gun;Lee, Ho Jun;Kim, Chang Soo;Hwang, Hyeon Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.231-242
    • /
    • 2016
  • Earthquake resistance of RC column-steel beam (RCS) joints with simplified details were studied. Simplified details are necessary for large columns to improve the productivity and constructability. To strengthen the beam-column joint, the effects of transverse beams, studs, and U-cross ties were used. Four 2/3 scale interior RCS connections were tested under cyclic lateral loading. The specimens generally exhibited good deformation capacity exceeding 4.0% story drift ratio after yielding of both beam and beam-column joint. Ultimately, the specimens failed by shear mechanism of the joint panel. The test strengths were compared with the predictions of existing design methods.

Inelastic Behavior of Beam-Column Joints Composed of RC Column and RS Beams (RC 기둥과 RS 보로 이루어진 보-기둥 접합부의 비탄성 거동)

  • 김욱종;윤성환;문정호;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.734-741
    • /
    • 2002
  • An experimental study was carried out for beam-column joints composed of RC column and RS beams. The purpose of this study is to examine the inelastic seismic behavior for the RC-RS connection. Two interior and one exterior beam-column assemblies with variable moment ratios were tested. Experimental results showed that strength and deformability except stiffness were satisfactory. It is considered that the lack of stiffness was due to the slipping of steel beam from RS beam. The behavioral characteristics of the RC-RS connection were evaluated according to the quideline suggested by Hawkins et al. Nominal strength at 5 % joint distortion was not satisfactory, but all the other requirements, such as strength preserving capability, energy dissipation, and initial stiffness and strength ratios after peak load were satisfactory compared with the guideline. Thus it was concluded that the RC-RS connections can maintain ductility with excellent energy-dissipating capacity if being provided with appropriate reinforced structural system such as RC core wall for the initial lateral stiffness.

Structural Performance of Y Type Plate Connection between Circular CFT Column and H Shape Steel Beam (Y형 플레이트를 적용한 원형 CFT 기둥-H형강 보 접합부의 구조성능)

  • Jo, Hyun-Kook;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.112-118
    • /
    • 2015
  • These days, there are lots of skyscrapers being constructed in downtown areas. However, it requires columns which have a way heavier load. and far more extensive cross sections of column as well. Therefore, it is hard to lay the foundation in downtown areas. This being the case, composite columns such as CFT column are primarily being used. However, CFT column is occurred of difficult beam-column connection development and lower performance since CFT column is closed cross-section. Especially, the result of the study concerning development of connection details with CFT column and exterior diaphragms are very low in current state. In this study, through developing CFT column-H shape steel beam applicating Y shape plate, set width and depth of Y shape plate which affect structural performance of connection details applicating Y shape plate as main variables, and evaluate structural performance through experiments. And also, design Y shape plate used at experiments as setting allowable stress for tension suggested at design criteria lower than axial force of tension side flange connected Y shape plate, through shape of destruction, verify the structural safety and performance of Y shape plate.

Behavior of Reduced Beam Section Connectios with Web Openins (웨브 개구부를 갖는 철골 보-기둥 접합부의 내진 성능에 관한 연구)

  • Park, Jong Won;Kang, Seoung Min;Hwang, In Kyu;Kang, Tae Kyoung;Kwon, Ki Ju
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.395-405
    • /
    • 2001
  • A test program was conducted on seismic-resistant steel moment connections constructed using Reduced Beam Sections with beam web openings. In the connection, in order to enhance ductility capacity under severe cyclic loads, a portion of the beam web near the beam-to-column connection is cut out instead of the beam flange as in dogbone connections. A total of 4 large scale specimens were tested in this program. The specimens were all made using $H-458{\times}417{\times}30{\times}50$ sections for the columns and $H-792{\times}300{\times}14{\times}22$ sections for the beams. Test specimens showed excellent performance similar to that of dogbone connections.

  • PDF