• Title/Summary/Keyword: 접합부 설계

Search Result 515, Processing Time 0.031 seconds

Seismic Performance of RC Column-Steel Beam Connections for Large Columns (대형기둥 적용을 위한 철근콘크리트기둥-강재보 접합부의 내진성능)

  • Park, Hong Gun;Lee, Ho Jun;Kim, Chang Soo;Hwang, Hyeon Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.231-242
    • /
    • 2016
  • Earthquake resistance of RC column-steel beam (RCS) joints with simplified details were studied. Simplified details are necessary for large columns to improve the productivity and constructability. To strengthen the beam-column joint, the effects of transverse beams, studs, and U-cross ties were used. Four 2/3 scale interior RCS connections were tested under cyclic lateral loading. The specimens generally exhibited good deformation capacity exceeding 4.0% story drift ratio after yielding of both beam and beam-column joint. Ultimately, the specimens failed by shear mechanism of the joint panel. The test strengths were compared with the predictions of existing design methods.

Numerical Analysis of Hinge Joints in Modular Structures Based on the Finite Element Analysis of Joints (접합부 유한요소해석을 바탕으로 한 모듈러 구조물의 힌지접합부 수치해석적 연구)

  • Kim, Moon-Chan;Hong, Gi-Suop
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.15-22
    • /
    • 2022
  • This paper introduces research on the hinge joint of modular structure joints using finite element analysis. The modular structure has a characteristic in that it is difficult to expect the integrity of columns and beams between unit modules because the construction is carried out such that the modules are stacked. However, the current modular design ignores these structural characteristics, considers the moment transmission for the lateral force, and analyzes it in the same manner as the existing steel structure. Moreover, to fasten the moment bonding, bolts are fastened outside and inside the module, resulting in an unreasonable situation in which the finish is added after assembly. To consider the characteristics that are difficult to expect, such as unity, a modular structure system using hinge joints was proposed. This paper proposed and reviewed the basic theory of joints by devising a modified scissors model that is modified from the scissors model used in other research to verify the transmission of load when changing from the existing moment junction to a hinge junction. Based on the basics, the results were verified by comparing them with Midas Gen, a structural analysis program. Additionally, the member strength and usability were reviewed by changing the modular structure designed as a moment joint to a hinge joint.

Seismic Performance of Precast Concrete Beam-Column Connections Using Ductile Rod (연성 강봉을 사용한 프리캐스트 콘크리트 보-기둥 접합부의 내진성능)

  • Lee, Sang-Jin;Hong, Sung-Gul;Lim, Woo-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.695-705
    • /
    • 2014
  • Precast concrete (PC) beam-column connections using ductile rods are proposed for earthquake zone. An existing beam-column connection, two PC specimens designed by considering failure modes and a conventional RC specimen were tested under cyclic loading to evaluate the seismic performance. The specimens were designed to satisfy the requirements of current design code. The variables are the yield strength of longitudinal reinforcing bars of PC beams. The test results showed that the proposed system applying smaller yield strength of the longitudinal reinforcing bars at the PC beams than the ductile rods was satisfied with seismic criteria. The deformation capacity and energy dissipation capacity of the proposed PC beam-column connections were greater than those of the existing DDC system.

An Experimental Study on the Strength of the Frame consisting of Concrete Filled Steel Tubular Column-H Beam under Alternately Repeated Horizontal Loading (반복하중을 받는 콘크리트충전 강관기둥-H형강보 골조의 강도에 관한 실험적 연구 -접합부 보강형식과 콘크리트충전에 따른 효과-)

  • Lee, Seong Do;Kim, Pil Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.641-655
    • /
    • 1998
  • It researched several jointing-methods of frame consisting of a concrete-filled steel tubular column and H-shaped beam. These beam-to-column connections is parameters to following: columns of square shape pipe infilled with or without concrete, joints assembled two types of diaphragm, outside-type and through-type. And it is testing that cyclically lateral loadings used hydraulic ram. In testing. we'll be on purposed to estimate the hysteretic behavior, strength and stiffness, energy absorption capacity, deformation capacity and failure configuration of each specimen. It is concluded that the frame specimens with outside-type are more stable and exhibit more energy absorption capacity compared with the through-type, in column of filled with concrete.

  • PDF

Direct Punching Shear Strength Model for Interior Slab-Column Connections and Column Footings with Shear Reinforcement (전단 보강 슬래브-기둥 내부 접합부 및 기초판에 대한 뚫림 전단강도 모델)

  • Choi, Kyoung-Kyu;Kim, Sug-Hwan;Kim, Dong-Hoon;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.159-168
    • /
    • 2011
  • In the present study, an improved design method was developed for the punching shear strength of interior slabcolumn connections and column footings with and without shear reinforcement. In the evaluation of the punching shear strength, the possible failure mechanisms of the connections and column footings were considered. The considered failures modes were inclined tensile cracking of concrete, yielding of shear re-bars, and concrete crushing of compression zone/strut. The punching shear applied to the concrete critical section was assumed to be resisted mainly by the compression zone. The punching shear strength of the concrete compression zone was evaluated based on the material failure criteria of the concrete subjected to the compressive normal stress and shear stress. For verification of the proposed design method, its prediction was compared with the existing test results. The result showed that the proposed method predicted the strengths of the test specimens better than the current design methods of the KCI code for both the shear reinforced and unreinforced cases.

An Experimental Study on the Block Shear Rupture of Angle Tension Members (인장력을 받는 ㄱ형강의 블록전단 파단에 관한 실험적 연구)

  • Kim, Bo Young;Lee, Kyu Kwong;Choi, Mun Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.721-730
    • /
    • 1998
  • In this paper, an experimental study have been many studies on the joints of steel structure, for it has great influences on the safety of structures. Research on block shear rupture of the joint receiving pure tension have been done in foreign countries, but not in Korea. This study focuses on the propriety of block shear design code, according to limited state design criteria of steel structures recently established in Korea, by an experiment on the joint of angle tension members. The methods of this study were to compare other study results on block shear rupture mode and ultimate capacity, and to evaluate the propriety of the criteria design code. The result is that tension yield shear ruptures and shear yield tension ruptures happened at the joint, and the experimental rupture load was 15% higher than the capacity entered in the criteria design code. We conclude that it is necessary to revaluate the block shear design code presented by many studies on the limited state design criteria of steel structures.

  • PDF

Shear Performance Evaluation of the Joint between Hollow Core Slabs (Hollow core 슬래브 간 접합부의 전단저항성능 평가)

  • Hong, Geon-Ho;Baek, Jong-Sam;Park, Hong-Gun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.94-101
    • /
    • 2010
  • Recently, the interest of precast concrete is increased for rapid construction in construction fields. Experimental study about the shear performance of the joint between hollow core slabs which have internal core to reduce their weight was performed. Main test variables were thickness of the topping concrete and existence of the wiremesh. Total 8 specimens including 4 in-plane shear and 4 out of plane shear were tested. Test results were analyzed in terms of cracking load, failure load, failure aspect, stiffness and ductility, and compared its design load to develop optimum design details. Test results indicated that the shear performance of the non-shrinkage mortar specimen was similar to that of 30mm thickness topping concrete specimen, and the effect of wiremesh reinforcement did not affect the failure load or stiffness of the specimens but the increase of ductility. And this paper presents the comparison results of the test results and design load to provide the optimum detail of the joint design between the hollow core slabs.

Design Methods for Eccentrically Loaded Bolt Groups for the Single Plate Connections Considering Sloped Edge Distance (편심전단을 받는 단일판접합부의 경사연단거리를 고려한 볼트군의 설계법)

  • Choi, Sun Kyu;Yoo, Jung Han;Park, Jai Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.43-53
    • /
    • 2014
  • A single plate connection(SPC) consists of a plate welded to the columns and bolts connected to the beam web. The SPC is widely used for a simple shear connection of steel structure because it is easy-to-fabricated, easy-to-installed and economical. The conventional SPC is used for 2 to 12 bolts in a single vertical row. It is designed to limit the plate thickness by bolt diameter to obtain flexible and ductile connections. The design strength for eccentric shear shall be the lesser of the shear strength of bolts or bearing strength of plate and when the design strength is decided by edge distance failure, the results can be very conservative. Although the research on special solution for 'weak-plate/strong-bolt' model with 2 to 4 bolts has been conducted by L. S. Muir, and W. A. Thonton, 2004, study on generalized design procedures did not conduct. This study proposed design procedure for evaluation of the design strength of eccentric shear bolt groups on a single plate connection based on the actual edge distance and the direction of bolt reaction forces by using elastic vector method(EVM) and instantaneous center of rotation method(ICM).

Load Transfer Mechanism of the Hybrid Beam-Column Connection System with Structural Tees (T 형강을 사용한 합성골조 보-기둥 접합부의 하중전달 메카니즘)

  • 김상식;최광호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.823-829
    • /
    • 2002
  • The composite frame system with reinforced concrete column and steel beam has some advantages in the structural efficiency by complementing the shortcomings between the two systems. The system, however has also a lot of problems in practical design and construction process due to the material dissimilarities. Considering these circumstances, this research is aimed at the development of the composite structural system which enables the steel beams to be connected to the R/C columns with higher structural safety and economy. Basically the proposed connection system is composed of four split tees, structural angles reinforced by stiffener, high strength steel rods, connecting plates and shear plates. The structural tests have been carried out to verify the moment transfer mechanism from beam flange to steel rods or connecting plates through the angle reinforced by siffener. The four prototype specimens have been tested until the flange of beam reached the plastic states. From the tests, no distinct material dissimilarities between concrete and steel have been detected and the stress transfer through wide flange beam - structural angle - high strength steel rod or connecting plate is very favorable.

Analytical and Experimental Study of an Unstiffened Extended End-Plate Connection (반복하중을 받는 비보강 확장 단부판 접합부의 해석 및 실험적 연구)

  • Kim, Hee Dong;Yang, Jae Guen;Pae, Da Sol
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.439-448
    • /
    • 2016
  • Extended end-plate connections(EEPC) are a type of connection applied in Pre-Engineered Building structures comprising beam-column connections of steel structures or tapered members. Extended end-plate connections(EEPC) show different behavioral characteristics owing to the influence of plate thickness, gauge distance of high strength bolt, diameter of high strength bolt frame, and the number of high strength bolts. In the USA and Europe, extended end-plate connections(EEPC) are applied in beam-column connections of steel structures in various forms; however, these are not widely applied in structures in Korea.This can be attributed to the fact that the proposal of design strength types for extended end-plate connections(EEPC), proposal of connection specifications, evaluation of seismic performance, and are not being performed appropriately. Therefore, the purpose of this study is to provide basic data for the domestic application of Unstiffened extended endplate connections. To realize this, nonlinear finite element analysis was conducted on a 12-mm thick Unstiffened extended endplate connections.