• Title/Summary/Keyword: 접합부 강도

Search Result 1,060, Processing Time 0.028 seconds

Determination of Key Influence Parameters on RC Joint Shear Behavior Using the Bayesian Parameter Estimation (Bayesian parameter estimation을 적용한 RC 접합부 전단거동의 주요영향 요인 결정)

  • Kim, Jae-Hong;Yang, Jong-Ho;Im, Duk-Ki
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.328-331
    • /
    • 2011
  • 준정적 횡하중을 재하 받는 철근콘크리트 보-기둥 접합부의 전단강도에 대한 주요 영향요인을 Bayesian parameter estimation의 신뢰성 이론 접목을 통해 검토하였다. 이와 같은 연구 scope의 수행을 위해 철근콘크리트 보-기둥의 실험 database가 구축되었다. 실험 database는 일정한 criteria을 적용하여 구축되었으며, 포함된 시편들은 최종적으로 접합부 내의 전단파괴가 지배하는 경우들이다. 포함된 시편들의 상세는 ACI (American Concrete Institute) 352R-02를 기준으로 평가되어졌다. 보-기둥 접합부의 전단강도에 영향 요인을 편중되지 않게 평가하고자, Bayesian parameter estimation의 신뢰성 이론을 적용하였다. Bayesian parameter estimation의 적용을 통해 전단강도에 영향이 적은 변수 (not informative parameter)를 순차적으로 제거 (stepwise removal process)함으로 주요 영향요인의 우선 순위를 확인할 수 있었다. 검토된 8개의 변수들 중에서, 횡하중을 재하 받는 철근콘크리트 보-기둥의 전단강도는 주로 콘크리트 압축강도, in-plane geometry, 종방향 보의 주철근 그리고 접합부 내의 구속철근 순으로 영향을 줌을 알 수 있었다.

  • PDF

Strength Model for Eccentric Shear of Flat Plate-Column Connections under Unbalanced Moment (불균형 휨모멘트를 받는 플랫플레이트-기둥 접합부의 편심전단강도)

  • Choi Kyoung-Kyu;Park Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.229-240
    • /
    • 2004
  • Many experiments have been performed to investigate eccentric shear strength and unbalanced moment-carrying capacity of flat plate-column connections under combined gravity and lateral load. However, each existing experiment used different test setup, and the shear strength of the connection was different depending on the test setup. Current design methods which were based on the experimental results might not accurately explain the shear strength of the flat plate. In a companion study, based on results of nonlinear finite element analyses, an alternative design method for the plate-column connection was developed. However, in this method, eccentric shear strength of the connection which was required for assessing unbalanced moment-carrying capacity was evaluated by an empirical formula. In the present study, a theoratical approach using Rankine's failure criterion was attemped to investigate failure mechanism of the eccentric shear. Based on the results, an improved strength model of the eccentric shear was developed, and it was verified by comparison with the existing experimental results. By means of the strength model, the design method developed in the companion study was re-verified.

Stress Distribution in Construction Joint of Prestressed Concrete Bridge Members with Tendon Couplers (고강도 철근콘크리트 보-기둥 외부 접합부의 전단 거동에 관한 실험)

  • Park Ki-Choul
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.535-542
    • /
    • 2005
  • Two series of experiments on the performance of beam-column joints in High-Strength Reinforced concrete frames were carried out. Main experimental parameters were : concrete strength, column axial load and amount of joint hoop reinforcement. Test result showed that the ultimate shear strength of exterior joints increased of column axial compressive force and the amount of the joint hoop reinforcements. Through the regression analysis on the 24data, the following equation is obtained $jv_u=(2.935{\times}10-3\;{\rho}jw{\cdot}fy\;+\;0.365){\sqrt{f_{ck}}}$

The Behavior of Anchor Connections of Cold-Formed Steel Roof Truss (경량형강 지붕트러스 앵커부의 거동)

  • Kwon, Young Bong;Kang, Sueng Won;Chung, Hyun Suk;Choi, Young Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.519-529
    • /
    • 2003
  • In recent years, the use of cold-formed steel roof truss has been increased in the steel houses and high-rise apartments. The design of the roof truss anchor connections has been based on the experience and decision of designers. In this paper, the structural behavior of anchor connections based on experimental and decision is described. In the tests, truss members and connection members were jointed directly with self-drilling screw fasteners and the simple shaped connection member with excellent workability and structural capacity was used to connect roof truss and sub-structure. The connecting method was selected according to the construction material of sub-structure: chemical anchor for reinforced concrete structure and welding or DX-Pin for steel structures. The pull-out tests of various type anchor connection were executed to obtain the strength and the stiffness and the result have been compared with AISI(1996) and AlSC(1989) specifications, Simple formulas for the shear strength of screw connections have been propose and compared with tests.

Deformability of RC Beam-Column Assembles (철근콘크리트 보-기둥 접합부의 연성능력)

  • Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.193-196
    • /
    • 2008
  • This paper proposes a method to predict the ductility capacity of reinforced concrete beam-column joints failing in shear after the formations of plastic hinges at both ends of the adjacent beams. The current design code divides joints into two categories: Type 1 for structures in non seismically hazard area and Type 2 in seismically hazard area. While there are many researches related to joint shear strength in Type 1, those in regard to joint ductility capacity of Type 2 are scarce. This paper classified the ductility capacity of beam-column joints into column, joint panel, and beam deformability. Since a brittle failure such as shear or bond failure in the columns must be avoided, column deformability was calculated by elastic analysis. The plastic hinges of the adjacent beams affect joint deformability. Therefore, the prediction of joint deformability was calculated with consideration to the degradation of the diagonally compressed concrete due to the strain penetration.

  • PDF

Cyclic Seismic Performance of Reduced Beam Section Steel Moment Connections: Effects of Panel Zone Strength and Beam Web Connection (패널존 강도 및 보 웨브 접합방식이 RBS 철골 모멘트접합부의 내진거동에 미치는 영향)

  • Lee, Cheol-Ho;Jeong, Sang-Woo;Kim, Jin-Ho
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.337-348
    • /
    • 2003
  • 본 연구는 8개의 RBS (reduced beam section) 내진 철골모멘트접합부의 실물대 실험결과를 요약한 것이다. 본 실험의 주요변수는 보 웨브 접합법 및 패널존 강도를 택하였다. 균형 패널존 시험체는 접합부의 내진성능을 감소시키지 않으면서, 보와 패널존이 함께 균형적으로 지진에너지를 소산시키도록 설계하여 값비싼 패널존보강판(doubler plates)의 수요를 줄이고자 시도한 것이다. 보 웨브를 용접한 시험체는 모두 특별 연성모멘트골조에서 요구되는 접합부 회전능력을 충분히 발휘하였다. 반면 보 웨브를 볼트접합한 시험체는 조기에 스캘럽을 가로지르는 취성파단이 발생하는 열등한 성능을 보였다. 보 그루브 용접부 자체의 취성파괴가 본 연구에서와 같이 양질의 용접에 의해 방지되면, 스켈럽 부근의 취성파단이 다음에 해결해야 할 문제로 대두되는 경향을 보인다. 보 웨브를 볼팅한 경우에 접합부 취성파단의 빈도가 월등히 높은 이유를 실험 및 해석결과를 토대로 제시하였다 측정된 변형도 데이터에 의할 때, 접합부의 전단력 전달메카니즘은 흔히 가정하는 고전 휨이론에 의한 예측과 전혀 다르다. 이는 전통적 보 웨브 설계법을 재검토할 필요가 있음을 시사하는 것이다. 아울러, 본 연구의 제한된 실험자료 및 접합부에서 요구되는 바람직한 거동기준을 근거로 균형 패널존의 강도범위에 대한 예비적 추정치를 제시하였다.

  • PDF

A Study on Strength of Plat-Plate Wall-Column Connections (Wall Column을 적용한 플랫플레이트 접합부 강도발현에 관한 연구)

  • Lee, Do-Bum;Park, Hong-Gun;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.257-266
    • /
    • 2006
  • Flat-plate building systems are utilized extensively for construction of apartments, hotels and office buildings because of short construction period, low floor-to-floor height and flexibility in plan design. Recently, to increase lateral seismic resistance of flat-plate building systems, wall-columns are used frequently. Therefore, to estimate strength of flat-plate column connection accurately, the effect of column section shape on the behavior of flat-plate column connection should be considered properly, In the present study, a numerical analysis was performed for interior connections of continuous flat-plate to analyze the effect of column section shape. For the purpose, a computer program for nonlinear FE analysis was developed, and the validity was verified. Through the parametric study, the variations of shear stress distribution around the connection were investigated. According to the result of numerical analysis, as the length of the cross section of column in the direction of lateral load increases, the effective area and the maximum shear strength providing the torsional resistance decrease considerably. Therefore, these effects should be considered properly to estimate the strength of flat-plate connection accurately.

수송용기 충격완충제 용접강도의 충돌거동 영향 평가

  • 구정회;민덕기;남재영;이종경;김영진
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.312-317
    • /
    • 1998
  • 사용 후 핵연료 수송용기는 자유낙하 충돌사고에 대비해 양 끝단에 충격완충체를 부착하는데 이 충격완충체의 층격흡수특성은 수송용기의 구조적 안전성애 크게 영향을 미친다. 충격완충체의 층격흡수재를 감싸주는 철제 케이스와, 내부 격막판의 용접 접합부는 제작공정상 일부 부분이 부분접합 형태를 갖기 때문에 완전 접합된 부분이나 모재인 판재 부분에 비해 강도가 약하다. 따라서, 본 연구에서는 충격완충체의 부분접합부와 같은 조건의 접합상태를 고려한 용접시편의 시험을 통해서 충격완충체 케이스의 용접 접합부에 대한 접합강도와 기계적 특성을 분석하고, 접합부의 강도특성이 수송용기의 자유낙하 충돌거동에 미치는 영향을 예측하였다.

  • PDF

Structural Performance of Column-Slab Connection in Flat Plate System Using High Strength Concrete (고강도 콘크리트를 사용한 플랫 플레이트 구조의 기둥·슬래브 접합부 구조성능)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.97-105
    • /
    • 2006
  • The reinforced concrete flat plate system provides architectural flexibility, clear space, reduced building height, simple formwork, which consequently enhance constructibility. One of the serious problem in the flat plate system is brittle punching shear failure due to transfer of shear force and unbalanced moments in column-slab connection. Since the use of high strength concrete recently has become in practice for reinforced concrete structures, it is highly desired to establish the structural design method for flat plate construction using high strength concrete. In this paper, interior column-slab connection constructed with high strength concrete were tested under lateral and gravity loads to evaluate their strength and behavior. The test parameters were slab reinforcement ratio and the gravity load levels.

Numerical Study of High-strength Steel CHS X-joints Including Effects of Chord Stresses (주관응력효과를 고려한 고강도강 X형 원형강관접합부의 수치해석 연구)

  • Kim, Seon Hu;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.115-126
    • /
    • 2018
  • Internationally representative steel design standards have forbidden or limited the application of high-strength steels to tubular joints, partly because of concerns about their unique material characteristics such as high yield ratio. Most of design standards stipulate that for steels whose yield strengths exceed 355 or 360 MPa, the strength equations cannot be utilized or strength reduction factor below 1.0 should be multiplied. However, the mechanical background behind these limitations is not clear. Experimental testing of high-strength steel CHS (circular hollow section) X-joints recently conducted by the authors also clearly indicated that the current limitations might be unduly conservative. As a continuing work, extensive, test-validated numerical analyses were made to investigate the behavior of high-strength steel CHS X-joint under axial compression. Three steel grades covering ordinary to very high strength steels were considered in the analysis. Again it was found that the high strength penalty to the joint strength in current standards is too severe and needs to be relaxed. The high-strength steel joints under the effects of chord stress generally showed higher strength than the ordinary steel joints and their strengths were conservatively predicted by current standards. It is also emphasized that current format of the CHS X-joint strength equation does not reflect observed behavior and needs to be recast.