• Title/Summary/Keyword: 접합부의 내력식

Search Result 66, Processing Time 0.024 seconds

An Experimental Study on Structural Behaviors of Double Shear Bolted Connections Fabricated with Ferritic Stainless Steel (STS430) (페라이트계 스테인리스강(STS430) 이면전단 볼트접합부의 구조거동에 관한 실험적 연구)

  • Kim, Tae Soo;Kim, Min Seong
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.463-474
    • /
    • 2013
  • Many experimental and numerical researches for thin-walled carbon steel and austenitic stainless steel single shear bolted connections have been conducted and the modified design equations of ultimate strength were proposed. In this study, the tests of double shear bolted connections with bolt arrangements ($2{\times}1$, $2{\times}2$) and end distance parallel to the loading direction as main variables were performed. Specimens were planed with a constant dimension of edge distance perpendicular to the loading direction, bolt diameter, pitch and gauge like single shear bolted connections. The test results such as ultimate strength and fracture mode were compared with those of current design standards. Furthermore, modified block shear equations for double shear bolted connections were suggested.

Inelastic Behavior of Post-tensioned Wide Beam System with different Reinforcement ratios within Column core (포스트텐션을 도입한 넓은 보에서 기둥 폭 내부에 배근된 보강재의 정착비에 따른 비탄성 거동 평가)

  • Choi Yun-Cheul;Lim Jae-Hyung;Moon Jeong-Ho;Lee Li-Hyung;Kwon Ki-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.85-94
    • /
    • 2005
  • Post-tensioned Precast concrete System(PPS) consists of U-shaped precast wide beams and concrete column. The continuity of beam-column joint is provided with floor concrete cast on the PC shell beam and post-tensioning. The purpose of this paper is to evaluate the response of PPS interior beam-column joint subjected to cyclic lateral loading. To this end, an experimental investigation was performed with three half-scale specimens of interior connection. The design parameters are the amount of beam reinforcement placed inside the joint core. The test results showed that cracks were distributed well without my significant degradation of strength and ductility. Also, it was found that the prestressing may affect to alter the torsional crack angle. And the specimens sufficiently resist up to limiting drift ratio of 0.035 in accordance with the provisional by ACl of acceptance criteria for concrete special moment frames.

An Experimental Study on Ultimate Behavior of Thin-walled Carbon Steel Bolted Connections with Varying Plate Thickness and End Distance (평판두께와 연단거리를 변수로 갖는 박판탄소강 볼트접합부의 종국거동에 관한 실험적 연구)

  • Lee, Yong Taeg;Kim, Tae Soo;Jeong, Ha Young;Kim, Seung Hun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.527-536
    • /
    • 2009
  • The purpose of this experimental study was to investigate the block shear fracture behavior and curling effect on a single shear-bolted connection in thin-walled carbon steel fabricated with four bolts. The specimens that fail by block shear were planned to have a constant dimension of the edge distance perpendicular to the loading direction, bolt diameter, pitch, and gage. The main variables of the specimens were plate thickness and end distance parallel to the loading direction. A monotonic tensile test was carried out for the bolted connections, and the ultimate behaviors, such as the fracture shape, ultimate strength, and curling, were compared with those that had been predicted using the current design specifications. The conditions of curling occurrence in terms of plate thickness and end distance were also investigated, and the strength reduction due to curling was considered.

Experiments of the Lateral Loading Capacity of Exterior Joints of Non-seismically Designed RC Frames in Korea (비내진설계된 우리나라 RC 외부 접합부의 횡저항 능력에 관한 실험)

  • Lee, Young-Wook;Park, Hyeong-Kyeon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.29-36
    • /
    • 2010
  • To investigate the cyclic characteristics of exterior joints in RC frame buildings which are typically used after 1988, 70% scaled T-shaped beam-column subassemblies were designed and tested with a displacement control that is composed of 9 steps, until 3.5% story drift was reached. Axial forces are applied to columns during the experiment to simulate a real situation. The results show that the non-seismic detailed specimens failed before reaching 0.85% story drift, and their strengths are less than 0.85 times the nominal flexural strength which beam or columns should reach. The relationship of principal stress and story drift of exterior joints is similar to the one that Priestly proposed.

Structural Behavior of Welded Built-up Square CFT Column to Beam Connections with External Diaphragm (용접조립 각형 CFT 기둥-보 외다이아프램 접합부의 구조 거동)

  • Lee, Seong Hui;Kim, Young Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.2
    • /
    • pp.75-83
    • /
    • 2016
  • Existing tubes for concrete filled tubular structure are made through welding of four plates irrespective, but the production performance is poor and special welding technique is needed to weld the internal or through diaphragm. Accordingly, We developed a welded built-up square steel tube having a welding lines and a stiffeners at location out of stress concentration. The welded built-up square steel tube occurred a interference with stiffeners at the internal or through diaphragm, therefore researches of a external diaphragm for welded built-up square CFT column connections are needed for the purpose of avoidance of a interfere with stiffeners. In this study we suggest a design formulation for external diaphragm of the welded built-up square CFT external diaphragm connections. Four specimens were manufactured for a experimental test, then we analyzed the behaviors of the specimens.

A Study of Structural Performance of Self-Drilling Screw Connections (직결나사 연결 접합부에 관한 구조성능평가 연구)

  • Park, K.Y.;Jeon, S.H.;Kim, Y.H.;Choi, S.M.
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.543-553
    • /
    • 2013
  • As the deep deck plate has the shape of open cross section, It can cause structural problems such as bending torsions due to instability of the section. There are a number of fasteners types which are frequently used on light gage steel diaphragms such as bolts, rivets, welds, and screws. In this study, the structural capacity of the self drilling screw connection between the deep deck and the reinforced cap plate was evaluated by experimental variables such as the arrangement method, numbers of screw, pitch of screw, and head plate thickness.

Studies on Evaluation for Long-term Loading of Composite Wood-joint and Characteristics of Joint Strength (I) - The strength properties of mechanical joints of Pinus densiflora with drift pin and bolt - (목재 접합부의 강도특성 및 장기 내력 평가 (I) - 소나무재의 Bo1t 및 Drift pin 접합부 능력(耐力) 성능 평가 -)

  • Hong, Soon-Il;Hwang, Won-Jung;Kim, Eun-Sam;Jin, Kwang-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.1-8
    • /
    • 2001
  • This study was carried out to investigate the strength and stiffness of drift pinned and bolted joints with steel-plates by the tension-type lateral strength tests. Specimens were solid wood of Pinus densiflora. Bolt and drift pin were jointed with inserted steel plates. Tests were conducted with combinations of two loading directions (parallel to the grain : 0 degree, perpendicular to the grain : 90 degree) and three diameters of fasteners (d = 6 mm, 10 mm, 12 mm). The results obtained were as follow: 1. In the test of the parallel to the grain, maximum loads were increased with increasing of the diameter of bolt and drift pin in the same end distance. In the test of perpendicular to the grain with diameter 10 mm and 12 mm, specimens mostly were failed with horizontal splits in woods reaching the yield load of drift pinned and bolted joints. 2. The ratio of maximum load to the yield load determined by the so-called "5% offset method", was great in bolted joints in the parallel to the grain This trend become more remarkable as the slenderness ratio was increased. 3. The calculated yield strength was agreed well with the experimental results of drift pinned joint(0 degree).

  • PDF

A Study on the Evaluation of Member Buckling Performance of Space Frame Structures (스페이스 프레임 구조물의 부재좌굴성능 평가방안 연구)

  • Kang, Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.176-182
    • /
    • 2018
  • The purpose of this study was to investigate the safety and rationality of buckling strength and length coefficient by comparing with the design standards of domestic and foreign compression materials based on the buckling test results of circular steel pipe with ball joints. The types of round steel pipes selected for buckling performance evaluation were ø$48.6{\times}2.8t$, ø$60.5{\times}3.2t$ and ø$76.3{\times}3.2t$. For the design of domestic and foreign compression materials, Korea 's Load Resistance and Factor Design, Japan' s Limit State Design, and British Standard BS5950 standard were applied. In this study, we compared and analyzed the buckling performance between the experimental results of the previous research and the domestic and foreign design standards. The results were summarized as follows. As a result of applying the full length of the member to the buckling length in the compression materials design standards of each country, it was 64-89% of the buckling strength by the experiment. Therefore, it is deemed desirable to perform the member design according to the current design standard formula for safety. Experimental results show that the measured buckling strength was 1.02-1.43 times higher than the buckling strength of pure cylindrical steel tubes in the design standards of Korea, Japan and the United Kingdom compression materials. Consequently, it seemed that the buckling strength of individual member in the design of space frame structure should be considered buckling coefficient as the length of pure round steel pipe rather than the length of inter-node.

Splice Performance Evaluation of Fastening Coupler According to the Slope Length of Internal Fasteners (조임쇠 경사길이에 따른 체결식 커플러의 이음성능 평가)

  • Jung, Hyun-Suk;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.11-19
    • /
    • 2022
  • In this study, in order to improve the splice performance of mechanical couplers, two new mechanical couplers with different connection modes were developed with rebar(SD400). The stress analysis of mechanical couplers with two different connection modes was carried out. Uniaxial tensile tests were carried out with type of steel, connection mode and the slope length of internal fastener as variables to analyze the influence on the maximum tensile strength. Building upon this previous work, the specimens that met the code in uniaxial tensile test were fabricated and static loading test and cyclic loading test were performed on the basis of Korean code(KS D 0249). The results of this research are as follows; (1) The tensile strength of steel and the slope length of internal fasteners have a certain influence on the maximum tensile strength. (2) The connection mode has some influence on the stiffness, slip and stiffness reduction rate of the connecting rebars. The results verify the feasibility of the proposed enhanced mechanical coupler in the field.

Design Considerations and Pull-Out Behavior of Mechanical Anchor of Reinforcement (철근 기계적 정착장치의 설계 고려사항과 인발특성)

  • 천성철;김대영
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.593-601
    • /
    • 2001
  • In RC structure, sufficient anchorage of reinforcement is necessary for the member to produce the full strength. Generally, conventional standard hook is used for the reinforcement's anchorage. However, the use of standard hook results in steel congestion, making fabrication and construction difficult. Mechanical anchor offers a potential solution to these problems and may also ease fabrication, construction and concrete placement. In this paper, the required characteristics and the design considerations of mechanical anchor were studied. Also, the mechanical anchor was designed according to the requirements. To investigate the pull-out behavior and properness of mechanical anchorage, pull-out tests were performed. The parameters of tests were embedment length, diameter of reinforcement, concrete compressive strength, and spacing of reinforcements. The strengths of mechanical anchor were consistent with the predictions by CCD method. The slip between mechanical anchor and concrete could be controlled under 0.2mm. Therefore, the mechanical anchor with adequate embedment could be used for reinforcement's anchorage. However, it was observed that the strength of mechanical anchors with short spacing of reinforcements was greatly reduced. To apply the mechanical anchor in practice (e.g. anchorage of the beams reinforcements in beam-column joint), other effects that affect the mechanical anchor mechanism, such as confinement effect of adjacent member from frame action or effects of shear reinforcement, should be considered.