• Title/Summary/Keyword: 접착방법

Search Result 614, Processing Time 0.029 seconds

Preventing marine organisms adhesion by oil-infused PDMS (오일이 주입된 PDMS를 이용한 해양생물의 부착방지 방법에 대한 고찰)

  • Kim, Su-Yeong;Yun, Yeong-Cheol;Im, Chae-Gang;Jeong, Yong-Chan;Lee, Su-Yeol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.45-45
    • /
    • 2018
  • 홍합, 따개비 등의 접착성 해양생물은 선박의 하부나 발전소 해수 공급용 튜브에 부착하여 운영 효율을 저하 시키고, 냉각기기 고장을 유발하는 파울링(Fouling) 문제를 야기시킨다. 일반적으로 이러한 문제에 대응하기 위해서 초접착성 해양생물이 주로 부착하는 부위에 $Cu_2O$, ZnO 등을 포함한 유기화합물로 표면처리를 하여 부착방지를 하고 있지만, 이 소재들을 장시간 사용 시 해양 오염 및 부식을 가속화하는 문제를 초례하기 때문에 최근에는 사용을 금지하고 있다. 이러한 유해성 소재 문제를 해결하고자 친환경적이고 부작용이 없는 초접착성 해양생물 부착방지 소재를 개발하고자 하였다. 본 연구에서는 낮은 표면장력을 갖는 PDMS(Polydimethylsiloxane) 소재를 기반으로 소수성 oil을 침투시킨 I-PDMS(Oil-Polydimethylsiloxane) 표면처리법을 고안하였고, 이 방법을 활용하여 초접착성 해양생물에 대한 부착방지 성능을 향상시키고자 하였다. 기존의 개발품들 보다 성능이 향상된 I-PDMS 제조하고자, Nano-indentation을 이용한 기계적 특성 평가, X컷 및 cross-cut을 이용한 부착력 평가, 실제 바다환경에서 해양생물의 부착력 시험, 바다 환경을 모사한 수조에서의 I-PDMS와 비교군 기판에서의 홍합 거동, 홍합과 기판의 접착강도 시험, 해양 미생물 평가를 실시하였으며, 이를 통해서 I-PDMS 성능 및 내구성을 입증하고자 하였다.

  • PDF

Measurement of Surface Energy and Intrinsic Work of Adhesion Using Johnson-Kendall-Roberts (JKR) Technique (Johnson-Kendall-Roberts (JKR) 기법을 이용한 표면 에너지 및 고유접착에너지 측정)

  • Lee, Dae Ho;Lee, Dong Yun;Cho, Kilwon
    • Journal of Adhesion and Interface
    • /
    • v.5 no.3
    • /
    • pp.18-22
    • /
    • 2004
  • By using JKR technique, the surface energy of a solid material and the intrinsic work of adhesion between two materials were determined. JKR technique is based on the contact mechanics, and is now being accepted as a new method which can overcome the demerits of the existing test methods such as contact angle measurement and other adhesion test. In this study, the surface energy of polydimethylsiloxane (PDMS) is measured by JKR method and the experimental results and the applicability of JKR apparatus were discussed.

  • PDF

Thickness Measurement of Adhesive Layer of Multilayer Using Power Cepstrum Technique (전력 켑스트럼 기법을 이용한 다층구조물 접착면의 두께측정)

  • Shin, Jin-Seob;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.26-30
    • /
    • 1997
  • In this paper, the thickness measurement method of adhesive layers of multilayers using power cepstrum signal processing technique has been proposed. The peak values for reflected signal from each layer have been separated by power cepstrum technique. Therefore, thickness of adhesive layers have been measured by the intervals of peak signal. In the experiment, the adhesive layers of 0.5mm-0.75mm thickness using epoxy(2-Ton and Plastic Steel Putty(A)) between the aluminum and the brass were formed. The adhesive layer thickness which is calculated with data of reflected signal by ultrasonic pulse-echo method was within error 1.34% of the measured values.

  • PDF

Application of Laser Surface Treatment Technique for Adhesive Bonding of Carbon Fiber Reinforced Composites (탄소복합재 접착공정을 위한 CFRP의 레이저 표면처리 기법의 적용)

  • Hwang, Mun-Young;Kang, Lae-Hyong;Huh, Mongyoung
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.371-376
    • /
    • 2020
  • The adhesive strength can be improved through surface treatment. The most common method is to improve physical bonding by varying the surface conditions. This study presents the effect of laser surface treatment on the adhesive strength of CFRP. The surface roughness was patterned using a 1064 nm laser. The effects of the number of laser shots and the direction and length of the pattern on the adhesion of the CFRP/CFRP single joint were investigated through tensile tests. Tests according to ASTM D5868 were performed, and the bonding mechanism was determined by analyzing the damaged surface after a fracture. The optimized number of the laser shots and the optimized depth of the roughness should be required to increase the bonding strength on the CFRP surface. When considering the shear stress in the tensile direction, the roughness pattern in the direction of 45° that increases the length of the fracture path in the adhesive layer resulted in an increase of the adhesive strength. The surface treatment of the bonding surface using a laser is a suitable method to acquire a mechanical bonding mechanism and improve the bonding strength of the CFRP bonding joint. The study on the optimized laser process parameters is required for utilizing the benefits of laser surface processing.

A Study on the Performance Evaluation Method of Warm-mix Asphalt Mixture by the Analysis of Bonding Properties between Asphalt Binder and Aggregate (중온 아스팔트 혼합물의 성능 평가를 위한 아스팔트 바인더와 골재 사이의 접착물성분석 방법에 관한 연구)

  • Yoo, In Sang;Cho, Dong-Woo;Hwang, Sung Do;Rhee, Suk Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.803-810
    • /
    • 2011
  • The public interest of global warming and energy shortage is gradually increased, and the related industries also have become interested in developing eco-friendly material and technology. Warm-mix asphalt (WMA) is a result of the developments to alleviate global warming and energy problems. This WMA is produced at lower temperatures than the temperature at which hot mix asphalt (HMA) is produced. Because most tests in Superpave are developed only for the performance and maintenance of HMA produced by hot temperatures, it is difficult for the tests to identify properly the material properties and then evaluate the performances between HMA and WMA. This study deals with the development of a new protocol to differentiate HMA and WMA performance, and especially the interfacial properties between asphalt and aggregate are targeted as the performance indicator; thus, an evaluation method and guideline are suggested. The concept and idea of the test method applied in this study were modified from the DSR moisture damage test protocol. In addition, TSR test was performed to affirm the relation between the asphalt-aggregate interface and the asphalt-aggregate mixture performances. The followings are the results of this study. Shear stress at 85% linear visco-elastic complex modulus (LVE $G^*$) can be a better parameter than LVE $G^*$, which can assess the interfacial or bonding performance between asphalt and aggregate. Moreover, measuring the bonding performance in thinner film thicknesses will be a better way to evaluate the real and field situation between asphalt and aggregate. The interfacial properties' criteria to apply the newly developed test and parameter should be developed, after the asphalt mixture criteria relating to the interfacial properties are completed.

Shear Performance Evaluation of Composite Thermal Insulation with Quasi-Non-Combustible according to Adhesive Type (부착 유형에 따른 준불연 복합단열판 전단성능평가)

  • Choi, Ki-Sun;Oh, Keunyeong;Park, Keum-Sung;Ha, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.507-518
    • /
    • 2022
  • The purpose of this research is to obtain experimental data for developing a structural design of an external insulation system by evaluating the shear performance of a composite insulation system according to the adhesive type. The shear performance of the composite insulation system was experimentally evaluated by considering a simultaneous placement method, full and spot/edge coverage using adhesive mortar. As a result of the test, the shear strength of simultaneous placement and full coverage method was almost similar, the spot/edge coverage method was about 80% of them. Also, the simultaneous placement method is considered to be constructively advantageous when applied as an external insulation system to a high-rise building compared to using an adhesive mortar.

Comparison of push-out bond strength of post according to cement application methods (시멘트 도포 방법에 따른 포스트의 push-out 접착 강도 비교)

  • Kim, Seo-Ryeong;Yum, Ji-Wan;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.6
    • /
    • pp.479-485
    • /
    • 2010
  • Objectives: The aim of this study was to compare the push-out bond strengths of resin cement/fiber post systems to post space dentin using different application methods of resin cement. Materials and Methods: Thirty extracted human premolars were selected and randomly divided into 3 groups according to the technique used to place the cement into root canal: using lentulo-spiral instrument (group Lentulo), applying the cement onto the post surface (group Direct), and injecting the material using a specific elongation tip (group Elongation tip). After shaping and filling of the root canal, post space was drilled using Rely-X post drill. Rely-X fiber post was seated using Rely-X Unicem and resin cement was light polymerized. The root specimens were embedded in an acrylic resin and the specimens were sectioned perpendicularly to the long axis using a low-speed saw. Three slices per each root containing cross-sections of coronal, middle and apical part of the bonded fiber posts were obtained by sectioning. The push-out bond strength was measured using Universal Testing Machine. Specimens after bond failure were examined using operating microscope to evaluate the failure modes. Results: Push-out bond strengths were statistically influenced by the root regions. Group using the elongation tip showed significantly higher bond strength than other ways. Most failures occurred at the cement/dentin interface or in a mixed mode. Conclusions: The use of an elongation tip seems to reduce the number of imperfections within the selfadhesive cement interface compared to the techniques such as direct applying with the post and lentulospiral technique.

Shear bond strength of rebonded orthodontic bracket with flowable resin (Flowable resin을 이용한 브라켓의 재접착 시 전단결합강도에 대한 연구)

  • Kim, Dong-Woo;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.35 no.3 s.110
    • /
    • pp.207-215
    • /
    • 2005
  • This study was performed to evaluate clinical practicality of the rebonding method with flowable resin without the removal of the residual resin on the debonded theeth and debonded bracket base after debonding. The samples of the control group (group I) were rebonded with Transbond XT using the usual rebonding method after the residual resin was removed. At experimental group, the brackets were rebonded with Transbond XT(group II) and CharmFil Flow (group III) without removal of residual resin which is the possibility becoming the index (or rebonding to similar position With initial bonding. The Shear bond Strength of the each group was measured. Patterns of bonding failure were evaluated with modified ARI score. and the shear bond strength according to patterns of bonding failure at experimental group was compared. Between the control group $(6.51\pm1.21MPa)$ and the group II rebonded with Transbond XT $(6.30\pm1.01MPa)$ did not have significantly difference in the shear bond strength (p=0.534), and the shear bond strength of group II was Significantly lower 4han the group III rebonded With CharmFil Flow $(7.29\pm1.54 MPa)$ (P=0.009). At control group, there was not large difference if distribution of bending failure pattern. But at experimental group, bond failure did not occur in interface between the resin-enamel. and bond failure between the resin-bracket, within the resin was distributed similarly. There was not significantly difference in the shear bond strength according to patterns of bonding failure at experimental group (P>0.05) The result of this study showed that the method suggested in this study aid flowable resin as rebonding adhesive could be useful in clinically.

Shear bond strength between gold alloy and orthodontic metal bracket using light emitting diode curing light (Light emitting diode를 이용한 광중합 시 금합금과 교정용 금속 브라켓의 전단접착강도)

  • Jung, Min-Ho;Chung, Shin-Hye;Shon, Won-Jun
    • The korean journal of orthodontics
    • /
    • v.40 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • Objective: The need to bond orthodontic brackets onto various alloys has increased because of the increasing demand for adult orthodontic treatment. This study tried to evaluate the shear bond strength between gold alloy and metal bracket using light emitting diode (LED) light curing after metal primer and silicoating surface conditioning. Methods: Half of the type III gold alloy plates were treated with sandblasting with aluminum oxide and metal primer containing 4-META. the other half were treated with silica and silane. Metal brackets were bonded with Transbond XT light curing adhesive on these plates and shear bond strength were evaluated 1 hour, 6 hours, and 24 hours later. The differences of shear bond strength between groups were evaluated with two-way ANOVA. Results: The results showed higher bond strength in the silicoating group and a tendency of bond strength increase over time. Conclusions: When using LED curing lights for metal bracket bonding to alloy surfaces, long curing time and silicoating can produce a reliable bonding strength.

A Study on the Improvement of Adhesion in Tension and Flexure of Polymer Cement Mortar Depending on Various Test Methods (시험방법에 따른 폴리머 시멘트 모르타르의 인장 및 휨접착강도 개선에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.47-57
    • /
    • 2019
  • The purpose of this study is to evaluate the improvement effect of adhesion in tension and flexure of polymer cement mortars that have widely used as a repair-reinforcement material in construction field according to adding of polymer dispersions depending on different three types test methods. From the test results, the adhesion performance is improved with a raise in polymer-cement ratio irrespective of the type of polymer. The maximums of A type adhesion in tension, B type adhesion in tension and adhesion in flexure show 1.90 times, 2.17 times and 1.83 times, respectively that of plain cement mortar. The relative strength ratios, B type adhesion in tension and adhesion in flexure of polymer cement mortars to tensile and flexural strengths of plain mortar respectively are in ranges of 50.1% to 101.7% and 73.8% to 132.9% compared to 46.9% of plain mortar. It is apparent that polymer cement mortars with EVA and polymer cement ratios of 10% to 15% are recommended considering its adhesion performance and cost as a repair-reinforcement material in construction field.