• Title/Summary/Keyword: 점성저항

Search Result 98, Processing Time 0.034 seconds

A Measurement of In-duct Ionomer's Absorption Coefficient Pattern according to A Change of ionic Nature (임피던스 관내의 이온기 변화에 따른 Ionomer 시편의 흡음패턴 측정)

  • Jang Soon Suck;Kim Joon Seop;Lee Je Hyeong;Park Jae Chull
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.297-300
    • /
    • 2001
  • 기존의 고분자 자체를 그냥 쓰거나 (발포체 형태로 만들면 음파가 내부의 공기 층을 통과할 때 주위의 벽과 마찰이나 점성 저항에 의해 음파의 에너지의 일부가 고분자 매트릭스의 열에너지로 변화하여 고분자에 흡수된다) 유리섬유나 석면(광물면), 식물 섬유류를 넣어 복합재료로 만들어 기능성과 물리적인 성질(강도, 치수 안정성, 방염성, 내후성, 단열성 등)을 높여왔다. 하지만 고분자의 이온기에 변화에 따른 음향 특성의 변화에 따른 연구는 없었다. 본 논문에서는 고분자의 흡음 성질을 향상시키기 위해 이온기를 가지고 있는 고분자나 산 혹은 염기 작용기를 가진 고분자를 합성하고 또한 이들 고분자들을 블렌딩하여 이들의 음향학적 성질을 알아 보려한다. 흡음율을 측정하기 위한 방법으로는 2-마이크로폰법을 이용하고 임피던스 관내의 얇고 지름이 작은 시편 샘플들의 음향인자를 측정이 가능하도록 기존에 사용되고 있는 콘덴서 마이크로폰이 아닌 프로브 마이크로폰을 이용하였다. $\;^{(1)}$ 특별히 실험을 위해 제작된 아이오노머는 PS, P$(S-14.3-AZn^{2+})$, P$(S-14.5-SSNH_4)$, P(S-6.6-ITANa), P(S-8.95-ITANa) 등의 고분자를 블렌딩한 샘플을 이용하여 흡음 패턴을 측정하였다.

  • PDF

Viscous Flow Calculation around a 30 FT-class Sailing Yacht Hull (30ft급 요트 선체 주위의 점성유동 해석)

  • Chi, Hye-Ryoun;Kim, Wu-Joan;Park, Jong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.248-257
    • /
    • 2007
  • Turbulent flows around a sailing yacht hull were calculated using CFD technique. Grid system was generated by using Gridgen package and Fluent package was used to calculate flows around a 30ft-class yacht hull designed by MOERI. The drafts at starboard and port sides of a yacht. when the hull was heeled, were determined by adjusting the same displacement in the generated grid system. Pressure distribution on the sailing yacht hull was obtained and the changes of drag and side force by heel and leeway variation were shown. The flow calculations have been carried out both with and without free surface, and keel and rudder were included for both cases. It was found that the calculated results with free surface gives better agreement with experiments than those without free surface, although there are still a room for the improvement in correct prediction of forces.

A Study on Shear Strength of Granular Due to The Various Particle Size (조립질 입자크기가 전단강도에 미치는 영향)

  • Lee, Seungho;Seo, Hyungil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.71-76
    • /
    • 2012
  • Shear strength of soil is power that resists failure and sliding according to any face in soils and one of the most important factors during engineering properties of soil. Shear strength is used for engineering science problems as bearing capacity methods of foundation or piles, slope stability after dam or Cutting Embankment and stability problem analysis of soils as lateral earth pressure of soil structures, ets. This study has analyzed shear strength change of samples classified 2.00mm(10sieve)와 0.85mm(20sieve), 0.475mm(40sieve) using direct shear tester after removing and drying cohesive soil ingredient of Weathered granite soil Therefore, this study would help studies about shear strength properties by particle size.

Position Control for AC Servo Motor Using a Sliding Mode Control (슬라이딩 모드제어에 의한 교류 서보 전동기의 위치제어에 관한 연구)

  • 홍정표;홍순일
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.3
    • /
    • pp.210-215
    • /
    • 2004
  • The dynamic model of ac servo motor is influenced very much due to rotor resistance change and nonlinear characteristic. By using the sliding mode control the dynamic behavior of system can be made insensitive to plant parameter change and external disturbance. This paper describes the application of the sliding mode control for position control of ac servo motor. The control scheme is derived and designed. A design method based on external load parameters has been developed for the robust control of ac induction servo drive. The proposed control scheme are given based on the variable structure controller and slip frequency vector control. Simulated results are given to verify the proposed design method by adoption of sliding mode and show robust control for a change of shaft initial J, viscous friction B and torque disturbance.

  • PDF

Characteristics of Wakes in a Viscous Liquid Medium of a Simulated GTL Process (모사된 GTL공정의 점성액체 매체에서 wake의 특성)

  • Lim, Dae Ho;Jang, Ji Hwa;Kang, Yong;Jun, Ki Won
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.571-576
    • /
    • 2011
  • Characteristics of bubble driven wakes were investigated in a simulated GTL process(0.102 m ${\times}$ 1.5 m in height) with viscous liquid medium. Effects of gas velocity(0.04 ~ 0.12 m/s) and liquid viscosity(0.001 ~ 0.050 $Pa{\cdot}s$) on the wake characteristics such as rising velocity, frequency, size and holdup were determined by employing a resistivity probe method. The wake phase formed behind the rising multi-bubbles as well as single bubbles were detected effectively from the conductivity fluctuations measured by the probe. Compressed, filtered and regulated air and aqueous solutions of Carboxy Methyl Cellulose(CMC) were used as a dispersed gas phase and a continuous liquid medium, respectively. It was found that the rising velocity and size of wake phase increased with an increase in gas velocity or liquid viscosity. The holdup and frequency of wake phase increased with increasing gas velocity due to the increase of gas input into the process with increasing gas velocity. However, the values of holdup and frequency of wake phase decreased with increasing liquid viscosity, since the size of bubbles and thus that of wakes increased with increasing liquid viscosity. The ratio of wake holdup to that of gas phase, which was in the range of 0.25 ~ 0.48, increased with an increase in liquid viscosity but decreased with gas velocity. The wake characteristics were well correlated in terms of operating variables within this experimental conditions.

A Study on the Properties of High-Fluidity Concrete with Low Binders Using Viscosity Agent (증점제를 사용한 저분체 고유동 콘크리트의 특성에 관한 연구)

  • Park, Gi-Joon;Park, Jung-Jun;Kim, Sung-Wook;Lee, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.689-696
    • /
    • 2017
  • The practical applications of ordinary high-fluidity concrete have been limited due to several drawbacks, such as high hydration heat, high amount of shrinkage, and non-economic strength development. On the other hand, due to its advantages, such as improvement of construction quality, reduction of construction cost and period, the development of high-fluidity concrete is a pressing need. This study examined the properties of high-fluidity concrete, which can be manufactured on the low binders using a viscosity agent to prevent the segregation of materials. The optimal viscosity agent was selected by an evaluation of the mechanical properties of high-fluidity concrete among six viscosity agents. The acrylic type and urethane type viscosity agents showed the best performance within the range where no material separation occurred. The mechanical properties were evaluated to examine the optimal amount of AC and UT viscosity agent added by mixing two viscosity agents according to the adding ratio and blending them together with high performance water reducing agent. When the ratio of the AC : UT viscosity agents was 5:5, it was most suited for high-fluidity concrete with low binders by increasing the workability and effect of the reducing viscosity.

Isolation and Characterization of Exopolysaccharide Producing Lactic Acid Bacteria from Korean Soy Sauce and Soybean Paste (전통 장류로부터 Exopolysaccharide 생성 유산균의 분리 및 특성)

  • Yun, Hye Ju;Lee, You Jung;Yeo, Soo-Hwan;Park, Hye Young;Park, Heui-Dong;Baek, Seong Yeol
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.190-197
    • /
    • 2013
  • Three slime-forming lactic acid bacteria were isolated from traditional Korean fermented soy sauce and soybean paste and shown to produce exopolysaccharides (EPS) in sucrose media. By isolating the strains, examining their morphological characteristics and determining their 16S rDNA sequences, N58-5 and K6-7 were identified as Leuconostoc mesenteroides and N45- 10 as Leuconostoc citreum. The acid and bile tolerances of these three strains were investigated. Amongst the three lactic acid bacteria, Leuc. citreum N45-10 exhibited the highest viability ($10^5-10^6$ CFU/ml) in 0.05 M sodium phosphate buffer (pH 0.3) for 2 h, in artificial gastric juice for 2 h and in 0.3%, 0.5% oxgall for 24h. Leuc. mesenteroides K6-7, N58-5 and Leuc. citreum N45- 10 were grown in sucrose liquid medium and 8.16 g/L, 3.65 g/L, 16.17 g/L of EPS was collected, respectively. The hydrolyzed EPS was analyzed by HPLC in order to determine the sugar composition of EPS. Leuc. mesenteroides K6-7 and N58-5 showed two peaks indicating glucose and fructose, thus they were determined to be hetero-type polysaccharides. Leuc. citreum N45-10 showed only the glucose polymer, indicating it to be a homo-type polysaccharide. In addition, all three lactic acid bacterial hemolysis did not demonstrate a clear zone in blood agar in the area surrounding a lactic acid bacteria colony.

Experimental Study on the Cyclic Behavior of Modular Building with Strap Braced Load Bearing Steel Stud Walls (스트랩 브레이스를 갖는 내력벽식 모듈러건축 스틸스터드 벽체의 반복하중에 대한 거동 연구)

  • Lee, Doo Yong;Cho, Bong Ho;Kim, Tae Hyeong;Ha, Tae Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.415-425
    • /
    • 2016
  • Load-bearing steel stud wall system is widely used for the middle-to-high rise modular buildings worldwide. Seismic performance is a key issue to apply load-bearing steel stud wall system to modular buildings in Korea. This study proposes a new strap braced steel stud wall system with enhanced seismic performance and design equations considering the flexural behaviour of the vertical outer studs. For the verification, two specimens with different strap braces and vertical outer stud were designed and tested. The test results showed that the total strengths were evaluated to be 1.11 to 1.18 times higher than the predicted values. Usually strap braced walls are considered to have low energy dissipation capacities. The proposed system showed enhanced seismic performance with equivalent damping of 9.42% due to the reduced pinching effects.

The application of Phosphate Magnesia Cement for Solidification of Soil (토양 고형화를 위한 인산염 마그네시아 시멘트 적용 연구)

  • Choi, Hun;Choi, Jun-Ok;Song, Myong-Shin;Moon, Chang-Yeol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.533-536
    • /
    • 2008
  • This study is the application of phosphate magnesia cement for solidification of soils. The object of the study is the application of the pavment of the farm roads. The new pavement method must be environmental, ecologic and durable. So, for solidification of farm road's soil, we use magnesia cement as quick setting, high strength materials. At magnesia phosphate cement, mixing ratio of mono ammonium phosphate and magnesia is 4:6 and w/b is 50 wt%, it show 14 MPa of compressive strength, and high hydration heat. Solidified soils that mixing ratios of magnesia cement and soil are 4:6 and 5:5 have very high durability for freezing and thawing.

  • PDF

Theoretical Analysis of Heat Pipe Thermal Performance According to Nanofluid Properties (나노유체 특성에 따른 히트파이프 성능해석)

  • Lim, Seung Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.599-607
    • /
    • 2015
  • In this study, we theoretically investigate the thermal performances of heat pipes that have different nano-fluid properties. Two different types of nano-particles have been used: $Al_2O_3$ and CuO. The thermal performances of the heat pipes are observed for varying nano-particle aggregations and volume fractions. Both the viscosity and the conductivity increase as the volume fraction and the aggregation increase, respectively. Increasing the volume fraction helps increase the capillary limit in the well-dispersed condition. Whereas, the capillary limit is decreased under the aggregate condition, when the volume fraction increases. The dependence of the heat pipe thermal resistance on the volume fraction, aggregation, and conductivity of the nano-particles is analyzed. The maximum thermal transfer of the heat pipe is highly dependent on the volume fraction because of the high permeability of the heat pipe. For the proposed heat pipe, the optimum volume fraction of the nano-particle can be seen through 3D graphics.