• 제목/요약/키워드: 점군 데이터

검색결과 96건 처리시간 0.026초

3차원 재구성을 위한 키 프레임 추출 (Extraction of Key Frames for 3D Reconstruction)

  • 최종호;유지상
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.5-8
    • /
    • 2016
  • 키 프레임 추출 기법은 2차원 비오 영상을 3차원으로 재구성하기 위해 꼭 필요한 프레임을 선택하는 방법이다. 본 논문에서는 비디오에서 빠르게 프레임을 검사하며 최적의 키 프레임을 선택하는 기법을 제안한다. 제안하는 기법은 3차원 재구성을 위한 전처리 과정에 초점을 둔 것으로 프레임 간 대응점 비율 검사를 통해 프레임의 도약 강도를 결정하고 기하 모델 추정이 원활한 프레임을 선택한다. 이로부터 3차원 복원 후처리 과정을 통해 최종적인 3차원 점군(point cloud) 데이터를 획득한다. 실험을 통해 다른 기법과 성능을 비교했을 때, 제안하는 기법이 복원 소요 시간도 적게 들고 보다 밀집된 3차원 데이터를 얻을 수 있었다.

  • PDF

산업사진측량을 이용한 항공기 얼라인먼트 정밀측정 (Precision Measurement for Aircraft Alignment using Industrial Photogrammetry)

  • 정성혁;이재기
    • 한국항공우주학회지
    • /
    • 제33권6호
    • /
    • pp.57-63
    • /
    • 2005
  • 높은 정확도와 빠른 측정기술의 필요성 증가는 산업사진측량에 대한 관심을 갖게 되었다. 본 연구에서 산업사진측량기술을 O-2A항공기의 정밀 측정에 적용하였다. 항공기의 정확한 설계데이터 없이 항공기의 check point를 이용하여 얼라인먼트를 측정하였고, 동체의 변형상태 조사는 Pro-Spot 시스템으로 수행하였다.

3D Laser Scanner를 이용한 암반사면의 절리방향 측정의 신뢰성에 관한 연구 (A Study on Reliability of Joint Orientation Measurements in Rock Slope using 3D Laser Scanner)

  • 박선현;이수곤;이벽규;김치환
    • 터널과지하공간
    • /
    • 제25권1호
    • /
    • pp.97-106
    • /
    • 2015
  • 암반사면을 안전하고 효율적으로 설계하기 위해서는 암반의 역학적 특성을 정밀하게 조사하여야 한다. 하지만 현재 사용되고 있는 클리노미터를 이용한 절리 조사의 한계점으로 인해 이를 보완할 수 있는 새로운 측정법의 연구가 필요로 하고 있다. 그러므로 본 연구에서는 3D Laser Scanner와 점군 데이터 분석 소프트웨어 Split-FX를 이용하여 암반사면의 절리방향 측정의 신뢰성을 분석하였다. 절리면 자동추출 기능을 통하여 총 495개의 절리 데이터를 얻었으며, 동일 지역을 클리노미터를 이용하여 측정한 38개의 데이터와 비교하여 분석한 결과 경사는 ${\pm}4^{\circ}$, 경사방향은 ${\pm}5^{\circ}$의 편차를 가지는 것을 확인하였다. 이러한 측정결과는 선행 연구를 통해 알게 된 클리노미터의 조사자에 따른 경사/경사방향 오차범위 ${\pm}5^{\circ}/{\pm}10^{\circ}$에 속하기 때문에 3D Laser Scanner를 이용한 절리데이터 취득 및 분석은 기존의 조사법을 보완할 수 있는 효율적이고 신뢰성 있는 조사법이라고 분석되었다.

오프라인 프로그래밍을 위한 3차원 레이저 스캐닝 시스템 기반의 로봇 캘리브레이션 방법 개발 (Development of robot calibration method based on 3D laser scanning system for Off-Line Programming)

  • 김현수
    • 한국산학기술학회논문지
    • /
    • 제20권3호
    • /
    • pp.16-22
    • /
    • 2019
  • 로봇을 적용한 자동화 생산 라인에서 로봇 셋업 시 시뮬레이션을 통한 Off-Line Programming(OLP)과 로봇 캘리브레이션은 작업 시간을 단축하고 양산 전부터 생산 품질을 관리하기 위해 필수적이다. 본 연구에서는 상용 3D 스캐너를 사용하여 생산 라인의 CAD 데이터와 현장의 3차원 측정 스캔 데이터를 정합하는 로봇 캘리브레이션 방법을 개발하였다. 제안한 방법은 Iterative Closest Point(ICP) 알고리즘을 통해 두 개의 3차원 점군 데이터를 정합하여 로봇을 교정한다. 정합은 3단계로 수행한다. 먼저 CAD 데이터로부터 3개의 평면으로 연결된 꼭짓점을 특징점으로 추출한다. 추출한 특징점 주변에 위치한 스캔 점군데이터로부터 평면을 재구성하여 대응하는 특징점을 생성한다. 마지막으로 ICP 알고리즘을 통해 추출한 특징점들 간의 거리를 최소화하여 위치 변환 행렬을 계산한다. 자동차 차체 조립라인의 스팟용접 로봇 설치에 제안한 방법을 적용한 결과 스팟용접에서 일반적으로 요구하는 정밀도 1.5mm 수준으로 로봇의 위치 및 자세를 캘리브레이션 할 수 있었으며, 기존에 레이저 트래커를 사용하면 로봇 한 대당 5시간 이상 소요되던 셋업 시간은 40분 이내로 단축할 수 있었다. 개발한 시스템을 사용하면 차체 스팟 용접에 필요한 정밀도를 유지하면서 자동차 차체 조립 라인의 OLP 작업시간을 단축하여, 로봇 정밀 티칭 시간을 단축하여, 생산제품의 품질 향상 및 불량률을 최소화할 수 있다.

침수흔적조사를 위한 UAV 사진측량 기반 DEM의 추출 및 활용 (Extraction and Utilization of DEM based on UAV Photogrammetry for Flood Trace Investigation and Flood Prediction)

  • 박정식;최용진;이진덕
    • 한국지리정보학회지
    • /
    • 제26권4호
    • /
    • pp.237-250
    • /
    • 2023
  • 본 연구에서는 UAV기반 항공사진측량에 의해 정사사진 및 DEM을 생성하고 이를 침수흔적도 제작을 위한 정밀조사에 적용하고자 하였다. 2012년 9월 제6호 태풍 산바(Sanba)의 영향으로 제방붕괴 및 내수침수 피해가 발생한 구미시 고아읍 농경지를 연구대상지역으로 선정하였다. UAV사진측량 성과의 최적 정확도를 얻기 위해 연구지역에 19점의 GCP 최적 배치상태에서 Pix4Dmapper 소프트웨어를 이용한 영상처리를 통하여 점군 데이터, DEM 및 정사영상을 생성하였다. loudCompare의 CSF Filtering를 적용하여 지면요소와 비지면요소로 point cloud를 분리한 후 GRASS GIS 소프트웨어에서 비지면요소만을 사용하여 최종적으로 보정된 DEM을 생성하였다. 최종 생성된 DEM으로부터 추출한 침수위 및 침수심 데이터와 한국국토정보공사(LX)의 공공데이터 포털사이트를 통하여 제공된 2012년 당시 같은 지역에 대한 기존 자료의 침수위 및 침수심 데이터를 비교하여 제시하였다.

MMS 점군 데이터를 이용한 CCTV의 실질적 감시영역 추출 (Creation of Actual CCTV Surveillance Map Using Point Cloud Acquired by Mobile Mapping System)

  • 최원준;박소연;최윤조;홍승환;김남훈;손홍규
    • 대한원격탐사학회지
    • /
    • 제37권5_3호
    • /
    • pp.1361-1371
    • /
    • 2021
  • 스마트 시티 서비스 중 방범·방재 분야가 2018년 기준 가장 높은 24%를 차지하고 있으며, 실시간 상황정보제공에 가장 중요한 플랫폼은 CCTV(Closed-Circuit Television) 이다. 이러한 CCTV의 활용을 극대화 하기 위해서는 CCTV가 제공하는 실질적인 감시 영역을 파악하는 것이 필수적이다. 하지만 국내에 설치된 CCTV양은 지자체 관리대상 포함 100만대를 넘고 있다. 이러한 방대한 양의 CCTV의 가시영역을 수동적으로 파악해야 하는 것은 문제점으로 제기되고 있다. 이에 본 연구에서는 CCTV의 실질적 가시권 영역 데이터를 효율적으로 구축하고, 관리자가 상황 파악에 소요되는 시간을 단축하는 방안을 제시하고자 하였다. 이를 위하여 첫째, 접근이 어려운 기 설치된 CCTV 카메라의 외부표정요소와 초점 거리를 MMS(Mobile Mapping System)의 점군 데이터를 활용하여 계산하고, 이 결과를 활용하여 FOV(Field of View)를 계산하였다. 둘째, 첫 단계에서 계산된 FOV 결과를 이용하여 건물에 의하여 발생하는 폐색 영역을 고려하여 CCTV의 실질적 감시 영역을 그리드 단위 1 m, 2 m, 3 m, 5 m, 10 m 폴리곤 데이터로 구축하였다. 이 방법을 경상북도 울진군에 위치한 5개소의 CCTV 영상에 적용한 결과, 평균 재투영 오차는 약 9.31 pixel, 공공데이터포털(Data Portal)에서 제공하는 위·경도 좌표와의 거리는 평균 약 10 m의 거리 차이가 발생하였고, MMS를 통해 취득한 점군 데이터 상의 CCTV 위치 좌표 값과는 평균 약 1.688 m의 위치 차이를 나타냈다. 단위 그리드의 한 변의 크기가 3 m인 경우, 본 연구를 통하여 계산된 감시 영역 폴리곤은 육안으로 확인한 실제 감시 영역과 최소 70.21%에서 최대 93.82%까지 일치함을 확인할 수 있었다.

3차원 데이터상에 영상등록을 위한 카메라 외부표정 계산 (Camera Exterior Orientation for Image Registration onto 3D Data)

  • 전재춘
    • 한국측량학회지
    • /
    • 제25권5호
    • /
    • pp.375-381
    • /
    • 2007
  • 본 논문에서는 3차원 점군, 3차원 벡터 또는 3차원 곡면에 영상등록하는 새로운 방법을 제안 하였다. 제안한 방법은 카메라 위치와 3차원 직선, 2차원 영상 직선을 각각 지나는 평면의 법선벡터의 일치화를 통하여 카메라 외부표정을 추정하는 것이다. 법선벡터 일치화의 조건은 각 법선벡터 쌍의 사잇각이 제로가 되는 것이다. 이 조건은 벡터내적인 수학식으로 표현 된다. 시뮬례이션을 통하여 제안한 방법이 영상등록을 위한 외부표정 추정을 강인하게 하는 것을 증명하였다.

색상분포에 기반한 적응형 샘플링 및 6차원 ICP (6D ICP Based on Adaptive Sampling of Color Distribution)

  • 김응수;최성인;박순용
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권9호
    • /
    • pp.401-410
    • /
    • 2016
  • 3차원 정합이란 다시점에서 획득한 3차원 점군들을 정렬하는 기술로써 지난 수십 년간 많은 연구가 진행되고 있는 분야이다. 이러한 3차원 정합은 ICP(Iterative Closest Point) 알고리즘을 시작으로 많은 변형 ICP가 소개되고 있다. 하지만 ICP 계열의 알고리즘들은 최근접점을 대응점으로 간주하여 알고리즘을 수행한다. 그렇기 때문에 3차원 점군의 초기 오차가 큰 경우 정확한 대응점 탐색에 실패할 수 있다. 이런 문제점을 해결하기 위해 본 논문에서는 색상과 3차원 거리가 융합된 6차원 거리와 색상분포 유사도를 이용한다. 더 나아가 색상 분할 기반 적응형 샘플링을 이용하여 알고리즘 연산 속도를 감소시키고 성능을 향상시키는 것을 목표로 한다. 마지막으로 실험을 통해 기존의 방법과 본 논문에서 제안하는 방법의 성능을 비교한다.

머신러닝을 이용한 3차원 도로객체의 분류 (Classification of 3D Road Objects Using Machine Learning)

  • 홍송표;김의명
    • 한국측량학회지
    • /
    • 제36권6호
    • /
    • pp.535-544
    • /
    • 2018
  • 급변하는 주변상황이나 대형차량과 같은 큰 지형지물에 센서가 가려질 경우에는 센서만을 이용한 완전 자율주행에는 한계가 따른다. 이에 자율주행을 위해서 센서를 이용한 한계점을 극복할 수 있도록 정밀한 도로지도를 부가적으로 이용하는 방법이 사용되고 있다. 본 연구는 국토지리정보원에서 제공하는 지상 MMS(Mobile Mapping System)로 취득된 3차원 점군자료를 이용하여 도로 객체를 분류하는 연구를 수행하였다. 본 연구를 위해서 원본 3차원 점군자료를 전처리 하고, 지면과 비지면점을 분리하기 위한 필터링 기법을 선정하였다. 또한 차선, 가로등, 안전펜스 등에 해당하는 도로객체를 초기 분할한 후 분할된 객체를 머신러닝의 종류인 서포트 벡터 머신을 이용하여 학습시킨 후 분류하였다. 학습데이터는 분할된 도로객체에서 추출한 고유값을 이용한 기하학적 요소와 높이정보만을 사용하였으며 분류결과 전체정확도는 87%, 카파계수는 0.795로 나타났다. 향후 도로객체의 분류를 위하여 기하학적인 요소 뿐만 아니라 다양한 항목을 추가한다면 분류정확도가 높아질 것으로 예상된다.

무게중심과 정점 간의 거리 특성을 이용한 삼각형 메쉬의 정렬 (The Alignment of Triangular Meshes Based on the Distance Feature Between the Centroid and Vertices)

  • 구민정;정상훈;김구진
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권12호
    • /
    • pp.525-530
    • /
    • 2022
  • 두 개의 점군(point cloud)을 정렬(alignment)하기 위해 현재까지 ICP(iterative closest point) 알고리즘이 널리 사용되고 있지만, ICP는 두 점군의 초기 방향이 크게 다를 경우 정렬에 실패하는 경우가 많다. 본 논문에서는 두 개의 삼각형 메쉬 A, B가 서로 크게 다른 초기 방향을 가질 때, 이들을 정렬하는 알고리즘을 제안한다. 메쉬 A, B에 대해 각각 가중치 무게중심(weighted centroid)을 구한 뒤, 무게중심으로부터 정점까지의 거리를 이용하여 메쉬 간에 서로 대응될 가능성이 있는 정점들을 특징점으로 설정한다. 설정된 특징점들이 대응될 수 있도록 메쉬 B를 회전한 뒤, A와 B의 정점들에 대해 RMSD(root mean square deviation)를 측정한다. RMSD가 기준치보다 작은 값을 가질 때까지 특징점을 변경하며 같은 과정을 되풀이하여 정렬된 결과를 얻는다. 실험을 통해 ICP 및 Go-ICP 알고리즘으로 정렬이 실패할 경우에도 제안된 알고리즘으로 정렬이 가능함을 보인다.