• Title/Summary/Keyword: 절점 응력

Search Result 167, Processing Time 0.029 seconds

Analysis of the Effect of Corner Points and Image Resolution in a Mechanical Test Combining Digital Image Processing and Mesh-free Method (디지털 이미지 처리와 강형식 기반의 무요소법을 융합한 시험법의 모서리 점과 이미지 해상도의 영향 분석)

  • Junwon Park;Yeon-Suk Jeong;Young-Cheol Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.67-76
    • /
    • 2024
  • In this paper, we present a DIP-MLS testing method that combines digital image processing with a rigid body-based MLS differencing approach to measure mechanical variables and analyze the impact of target location and image resolution. This method assesses the displacement of the target attached to the sample through digital image processing and allocates this displacement to the node displacement of the MLS differencing method, which solely employs nodes to calculate mechanical variables such as stress and strain of the studied object. We propose an effective method to measure the displacement of the target's center of gravity using digital image processing. The calculation of mechanical variables through the MLS differencing method, incorporating image-based target displacement, facilitates easy computation of mechanical variables at arbitrary positions without constraints from meshes or grids. This is achieved by acquiring the accurate displacement history of the test specimen and utilizing the displacement of tracking points with low rigidity. The developed testing method was validated by comparing the measurement results of the sensor with those of the DIP-MLS testing method in a three-point bending test of a rubber beam. Additionally, numerical analysis results simulated only by the MLS differencing method were compared, confirming that the developed method accurately reproduces the actual test and shows good agreement with numerical analysis results before significant deformation. Furthermore, we analyzed the effects of boundary points by applying 46 tracking points, including corner points, to the DIP-MLS testing method. This was compared with using only the internal points of the target, determining the optimal image resolution for this testing method. Through this, we demonstrated that the developed method efficiently addresses the limitations of direct experiments or existing mesh-based simulations. It also suggests that digitalization of the experimental-simulation process is achievable to a considerable extent.

New Development of Hybrid Concrete Support Structure with Driven Piles for Offshore Wind Turbines (하이브리드 해상풍력 파일 기초 콘크리트 지지구조(MCF) 개발)

  • Kim, Hyun Gi;Kim, Bum Jun;Kim, Ki Du
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.307-320
    • /
    • 2013
  • This paper proposes a new hybrid support structure by the driven piles which removes disadvantages of the existing type of support structure for offshore wind turbines. The hybrid type of support structure is combined with concrete cone and steel shaft, and is supported not only by gravity type foundations but also by driven piles. For three dimensional analysis of the huge and thick concrete structure, a solid-shell element that is capable of exact modeling and node interpolations of stresses is developed. By applying wave theory of stream function and solid-shell element in XSEA simulation software for fixed offshore wind turbines, a quasi-static analysis and natural frequency analysis of proposed support structure are performed with the environmental condition on Southwest Coast in Korea. In the result, lateral displacement is not exceed allowable displacement and a superiority of dynamic behavior of new hybrid support structure is validated by natural frequency analysis. Consequently, the hybrid support structure presented in this study has a structural stability enough to be applied on real-site condition in Korea. The optimized structures based on the preliminary design concept resulted in an efficient structure, which reasonably reduces fabrication costs.

A Study on the Structural Optimization for Geodesic Dome (지오데식 돔의 구조최적화에 대한 연구)

  • Lee, Sang-Jin;Bae, Jung-Eun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.47-55
    • /
    • 2008
  • This paper deals with basic theories and some numerical results on structural optimization for geodesic dome. First of all, the space efficiency of geodesic dome is investigated by using the ratio of icosahedron's surface area to the internal volume enclosed by it. The procedure how to create the geodesic dome is also provided in systematic way and implemented and utilized into the design optimization code ISADO-OPT. The mathematical programming technique is introduced to find out the optimum pattern of member size of geodesic dome against a point load. In this study, total weight of structure is considered as the objective function to be minimized and the displacement occurred at loading point and member stresses of geodesic dome are used as the constraint functions. The finite difference method is used to calculate the design sensitivity of objective function with respect to design variables. The SLP, SQP and MFDM available in the optimizer DoT is used to search optimum member size patterns of geodesic dome. It is found to be that the optimum member size pattern can be efficiently obtained by using the proposed design optimization technique and numerical results can be used as benchmark test as a basic reference solution for design optimization of dome structures.

  • PDF

Structural Behavior of Steel Wire Truss Deck with Continuous Lattices to the Longitudinal Direction (길이방향으로 연속된 래티스를 가지는 철선 트러스데크의 구조 거동)

  • Lee, Sung Ho;Park, Hyung Chul;Oh, Bo Hwan;Cho, Soon Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.37-44
    • /
    • 2009
  • A truss deck system that has replaced the slab form conventional method has become widely used in the construction of reinforced concrete structures as well as steel structures. The current commercial products, however, have some problems. The discontinuity between the lattice wires on the joint of the bottom wire induces vierendeel behavior, which increases the deflection of the system. In this research, a new truss deck system with continuous lattice wires on the level of the bottom wire was developed to reduce the system's vierendeel behavior and to improve its deformation capacity. To investigate the system's structural behavior, an experimental test and an analysis were performed. The main parameters of the test and analysis were the longitudinal shape and spacing of the lattices. To simulate the loading condition in the construction field, uniform construction loads were directly applied on the deck plates of the analysis model and the test specimens. The results of such analysis and test revealed that the longitudinal shape of the lattice wires is a major factor affecting the structural behavior of a steel wire truss deck. Thus, continuous lattice wires could result in decreased vierendeel behavior in the steel wire truss deck. It was also found that the truss deck system with lattices spaced longer than in the conventional products could be effectively used without increasing the member stresses.

A Study on the Evaluation of Member Buckling Performance of Space Frame Structures (스페이스 프레임 구조물의 부재좌굴성능 평가방안 연구)

  • Kang, Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.176-182
    • /
    • 2018
  • The purpose of this study was to investigate the safety and rationality of buckling strength and length coefficient by comparing with the design standards of domestic and foreign compression materials based on the buckling test results of circular steel pipe with ball joints. The types of round steel pipes selected for buckling performance evaluation were ø$48.6{\times}2.8t$, ø$60.5{\times}3.2t$ and ø$76.3{\times}3.2t$. For the design of domestic and foreign compression materials, Korea 's Load Resistance and Factor Design, Japan' s Limit State Design, and British Standard BS5950 standard were applied. In this study, we compared and analyzed the buckling performance between the experimental results of the previous research and the domestic and foreign design standards. The results were summarized as follows. As a result of applying the full length of the member to the buckling length in the compression materials design standards of each country, it was 64-89% of the buckling strength by the experiment. Therefore, it is deemed desirable to perform the member design according to the current design standard formula for safety. Experimental results show that the measured buckling strength was 1.02-1.43 times higher than the buckling strength of pure cylindrical steel tubes in the design standards of Korea, Japan and the United Kingdom compression materials. Consequently, it seemed that the buckling strength of individual member in the design of space frame structure should be considered buckling coefficient as the length of pure round steel pipe rather than the length of inter-node.

Numerical Prediction of Ultimate Strength of RC Beams and Slabs with a Patch by p-Version Nonlinear Finite Element Modeling and Experimental Verification (p-Version 비선형 유한요소모델링과 실험적 검증에 의한 팻취 보강된 RC보와 슬래브의 극한강도 산정)

  • Ahn Jae-Seok;Park Jin-Hwan;Woo Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.375-387
    • /
    • 2004
  • A new finite element model will be presented to analyze the nonlinear behavior of RC beams and slabs strengthened by a patch repair. The numerical approach is based on the p-version degenerate shell element including theory of anisotropic laminated composites, theory of materially and geometrically nonlinear plates. In the nonlinear formulation of this model, the total Lagrangian formulation is adopted with large deflections and moderate rotations being accounted for in the sense of von Karman hypothesis. The material model is based on hardening rule, crushing condition, plate-end debonding strength model and so on. The Gauss-Lobatto numerical quadrature is applied to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version nonlinear finite element model is demonstrated through the load-deflection curves, the ultimate loads, and the failure modes of RC beams or slabs bonded with steel plates or FRP plates compared with available result of experiment and other numerical methods.

Shell Finite Element for Nonlinear Analysis of Reinforced Concrete Containment Building (철근콘크리트 격납건물의 비선형 해석을 위한 쉘 유한요소)

  • Choun Young-Sun;Lee Hong-Pyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.93-103
    • /
    • 2006
  • It is absolutely essential that safety assessment of the containment buildings during service life because containment buildings are last barrier to protect radioactive substance due to the accidents. Therefore, this study describes an enhanced degenerated shell finite element(FE) which has been developed for nonlinear FE analysis of reinforced concrete(RC) containment buildings with elasto-plastic material model. For the purpose of the material nonlinear analysis, Drucker-Prager failure criteria is adapted in compression region and material parameters which determine the shape of the failure envelop are derived from biaxial stress tests. Reissner-Mindlin(RM) assumptions are adopted to develop the degenerated shell FE so that transverse shear deformation effects is considered. However, it is found that there are serious defects such as locking phenomena in RM degenerated shell FE since the stiffness matrix has been overestimated in some situations. Therefore, shell formulation is provided in this paper with emphasis on the terms related to the stiffness matrix based on assumed strain method. Finally, the performance of the present shell element to analysis RC containment buildings is tested and demonstrated with several numerical examples. From the numerical tests, the present results show a good agreement with experimental data or other numerical results.