• Title/Summary/Keyword: 절삭치형

Search Result 7, Processing Time 0.024 seconds

A Study on Tooth Profile Error in Internal Gear Shaping (내치차 절삭시의 치형오차에 관한 연구)

  • 박천경;최영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.154-162
    • /
    • 1991
  • In this study, the simulation program is developed where the tooth profile error in internal gear shaping is calculated considering several factors which affect it. This factors are the circular feed of the pinion cutter, the interference by the geometric conditions of the cutter and the internal gear, the deviation from the theoretical involute profile of the cutter and the eccentricity of the cutter and the internal gear. With this program, the effects are investigated which the geometric conditions and the cutting conditions in internal gear shaping have on the tooth profile error of the internal gear. The condition for the minimization of it is derived and then the results of simulation are adequately verified by measurements of internal gears cut by a pinion cutter.

전위기어의 성능 및 강도설계

  • 박재춘
    • Journal of the KSME
    • /
    • v.25 no.1
    • /
    • pp.9-22
    • /
    • 1985
  • 재래의 표준기어방식으로는 여러 가지의 취약점이 있는데, 이러한 결점은 치형을 다시 교 정(correction)하는 전위기어방식으로 설계하여 성능이 개선되고 해결될 수 있다. Corrected tooth의 창성은 공구를 전위하여 절삭하므로 이루어지고, 이 방식은 치형곡선의 곡률반지름을 증가시키며, 미끄럼률을 감소시켜서 강도를 증가시키도록 설계할 수 있다. 본 해설에서는 전위 기어 영역에서 기어의 성능개선과 복잡한 강도의 설계방법등을 최근경향에 부합시키고 통일된 형식의 체계로 기어설계를 쉽게 발전시킬 수 있도록 시도한 것이다.

  • PDF

A Study on the Micro Machining Technology of Mold and Die (미세 절삭에 의한 금형 가공기술 개발)

  • Lee E. S.;Je T. J.;Lee S. W.;Lee D. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.231-238
    • /
    • 2002
  • 미세 절삭에 의한 마이크로 형상가공 및 이를 이용한 미세금형 가공기술개발을 위하여 절삭 공구를 이용한 기계적 미세 가공법에 대한 고찰과 더불어 shaping, end-milling, drilling 등의 가공이 가능한 기계적 미세 가공시스템을 구성하고 이를 이용한 미세 치형 그루브와 미세 격벽 등 미세 형상 구조의 금형 개발을 위한 가공실험을 수행하였다. 본 실험에서는 먼저 shaping 방식으로 세 종류의 다이아몬드 바이트를 사용하여 알루미늄, PMMA, Nickel, 황동 등의 소재에 pitch $150{\mu}m$, 높이 $8{\mu}m$ 내외의 미세 치형의 금형 코어를 가공하였고, 다음으로 Z축에 air spindle을 설치하여 $\phi0.2mm$의 end-mill(WC)을 사용하여 황동 소재에 깊이 $200{\mu}m$, 폭 $200{\mu}m,\;100{\mu}m,\;50{\mu}m,\;30{\mu}m$의 두께 변화를 주어 미세 격벽에 대한 가공실험을 하였다. 미세 구멍가공실험으로는 drilling 전용장비를 구성하여 $\phi0.6\~0.15mm$의 drill공구로 SM45C와 세라믹$(Si_3N_4-BN)$ 소재에 스텝이송방식에 의한 미세 구멍 가공 실험을 실시하였다.

  • PDF

Stress Analysis of a Clamp Chuck for Machining of a Ring Gear (링기어 절삭을 위한 클램프 척의 응력해석)

  • Sim, Han-Sub;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.73-78
    • /
    • 2011
  • This study contains to theory and analysis research for the stress and the translation of an expand disk that fix a ring gear for tooth profile machining. The stress of the expand disk is analysed by the finite element method(FEM) to calculate design parameters. From the analysis results, the stress of the expand shows a linear tendency under various fixing force. This results show that the expand disk have a elastic characteristics as a disk spring. The maximum stress was observed on under side in split section of the expand disk. It is verified that the analysis results are useful to calculate design parameters of the expand disk.

Double Enveloping Worm Thread Tooth Machining Study using Full Face Contact Cutting Tool (전체면 접촉 절삭공구를 이용한 장구형 웜나사 치형가공 연구)

  • Kang, S.J.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.3
    • /
    • pp.144-150
    • /
    • 2020
  • In this paper, we propose the generation of a double enveloping worm thread profile with a non-developable ruled surface. Thread surface machining cuts all the way from the tip to the tooth root at one time, like full-face contact machining, rather than cutting several times like point machining. This cutting can reduce the cutting duration and achieve the smooth surface that does not require a grinding process for the threaded surface. The mathematical model of the cutting process was developed from theoretical equations, and the tooth surface was generated using two parameters and modeled in the CATIA using the generated Excel data. Additionally, the machining process of the worm was simulated in a numerical control simulation system. To verify the validity of the proposed method, the deviation between the modeling and the workpiece was measured using a 3D measuring machine.

Analysis of Tooth Profile Accuracy of Enveloping Worm Thread Depending on End Mill Tool Shape (장구형 웜 나사의 절삭 엔드밀 공구 형상에 따른 치형 정밀도 분석)

  • Kang, S.J.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.183-189
    • /
    • 2019
  • Cylindrical worm reducers are generally used in various fields and forms throughout the industry, and demand is increasing due to their role as an integral part of the industry. Market trends require high-load, high-precision components, and small-sized reducers with large loads. When using a cylindrical worm reducer, a reducer designed with a reduced center distance while maintaining the same output torque results in gear wear. To overcome this difficulty, an enveloping worm gear reducer is introduced and studied. In this paper, three types of end mill tools are used to evaluate the tooth profile accuracy for each tool shape during machining of the tooth profile for a non-developed surface worm thread. The effect of the endmill shape on the accuracy of the tooth profile was analyzed by performing 3D modeling of the surrounding worm tooth profile based on the Hindley method. In this study, we analyzed tooth profile accuracy, tooth surface roughness, and tooth surface machining time, etc. Through the study, efficient machining conditions for the enveloping worm gears and the influence of parameters on the process were presented.

An Experimental Research for the Optimization of the Gear Grinding Machine's Operating Condition (기어 그라인딩 장비 가공조건 최적화에 대한 실험적 연구)

  • Lee, Hyun-Ku;Kim, Moo-Suk;Kang, Koo-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.665-671
    • /
    • 2010
  • To improve the gear noise quality, gear tooth grinding machine are widely used in automotive industry. While using the gear profile grinding machine to improve the gear tooth quality of the transmission, several defects such as chattering, tooth waves that cause the gear noise occasionally happened. But it is very difficult to solve that problem, because there is no one who knows the setting up the optimal grinding condition appropriately. The abnormal manufacturing conditions which make the gear noise make the engineer to spend a lot of time, effort, and money. Due to demands for solving the serious abnormal gear noise happened in the automatic transmission in the mass product stage, the vibration checking process in the worm wheel axis, work rotation and fixed axis of the grinding machine were adapted to find the root causes. As a result, gear profile wave are affected by the work rotation axis's unbalance which is caused by worm wheel feeding speed. And a primary and the secondary grinding feeding speed, cutting oil, work fixed forces are also proved as the important factors. After setting up the grinding condition reported in this paper, it was adapted successfully to the grinding machine to manufacture the new automatic transmissions' gear. The gear noise was dramatically disappeared and the process and the results will offer good guides to the engineers who manufacture the gear with the grinding machine.