• Title/Summary/Keyword: 절리선

Search Result 55, Processing Time 0.021 seconds

Development of Discontinuity Orientation Measurement (DOM) Drilling System and Core Joint Analysis Model (Discontinuity Orientation Measurement (DOM) 시추장비 및 코어절리 해석모델 개발)

  • 조태진;유병옥;원경식
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.33-43
    • /
    • 2003
  • Field investigations of the orientations of discontinuity planes inside the borehole for designing the underground rock structures have been depend solely on the borehole image-taking techniques. But, borehole image-taking has to be processed after the completion of drilling operation and also requires the handling of highly expensive apparatus so that practical application is very restricted. In this study Discontinuity Orientation Measurement (DOM) drilling system and discontinuity analysis model RoSA-DOM are developed to acquire the reliable information of rock structure by analyzing the characteristics of joint distribution. DOM drilling system retrieves the rock core on which the reference line of pre-fixed drilling orientation is engraved. Coordinates of three arbitrary points on the joint surface relative to the position of reference line are assessed to determine the orientation of joint plane. The position of joint plane is also allocated by calculating the location of core axis at which joint plane is intersected. Then, the formation of joint set is analyzed by utilizing the clustering algorithm. Total and set spacings are calculated by considering the borehole axis as the scanline. Engineering applicability of in-situ rock mass around the borehole is also estimated by calculating the total and regional RQDs along the borehole axis.

A Study on the Effect of Normal Stress on the Joint Shear Behavior (절리면 전단거동에서의 법선응력 영향 고찰)

  • Cho, Taechin;Suk, Jaewook
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.203-211
    • /
    • 2013
  • Shear behavior of joint plane has been investigated considering the magnitude of normal stresses and initial surface roughness. Shear strength of joint plane has been measured by performing the multi-stage shear test in which applied normal stress level has been increased stepwise. Multi-stage shear test within the specified normal stress range has been repeated and two types of strength parameter variation have been observed: type 1 - both cohesion and friction angle decrease, type 2 - cohesion decrease and friction angle increase. Trends of strength parameter variation for the three rock types, gneiss, granite and shale, have been investigated and the influence of initial roughness of joint plane on the sequential shear strength change for the repeated multi-stage shear tests also has been analyzed.

Simulation of Groundwater Flow in Fractured Porous Media using a Discrete Fracture Model (불연속 파쇄모델을 이용한 파쇄 매질에서의 지하수 유동 시뮬레이션)

  • Park, Yu-Chul;Lee, Kang-Kun
    • Economic and Environmental Geology
    • /
    • v.28 no.5
    • /
    • pp.503-512
    • /
    • 1995
  • Groundwater flow in fracture networks is simulated using a discrete fracture (DF) model which assume that groundwater flows only through the fracture network. This assumption is available if the permeability of rock matrix is very low. It is almost impossible to describe fracture networks perfectly, so a stochastic approach is used. The stochastic approach assumes that the characteristic parameters in fracture network have special distribution patterns. The stochastic model generates fracture networks with some characteristic parameters. The finite element method is used to compute fracture flows. One-dimensional line element is the element type of the finite elements. The simulation results are shown by dominant flow paths in the fracture network. The dominant flow path can be found from the simulated groundwater flow field. The model developed in this study provides the tool to estimate the influences of characteristic parameters on groundwater flow in fracture networks. The influences of some characteristic parameters on the frcture flow are estimated by the Monte Carlo simulation based on 30 realizations.

  • PDF

Relationship between fracture distribution and the acidity of mine drainage at the Il-Gwang Mine (일광광산의 절리분포 특성과 광산배수 산성도의 관계)

  • Choi, Jae-Young;Um, Jeong-Gi;Kwon, Hyun-Ho;Shim, Yon-Sik
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.425-436
    • /
    • 2010
  • We established a stochastic 3-D fracture network system for fractured rock masses located in Il-Gwang Mine, Busan, to explore the relationship between the acidity of mine drainage and fracture geometry. A field scanline survey and borehole image processing were performed to estimate the best probability distributions of fracture geometry parameters. The stochastic 3-D fracture network system constructed for the rock masses was validated and deemed to be successful. The 3-D fracture network model was suitable for developing conceptual ideas on fluid flow in fractures at a field experimental site. An injection well and three observation wells were drilled at the field experimental site to monitor the acidity of mine drainage induced by the injection of fresh water. The field experiment, which was run for 29 days, yielded a significant relationship (with a high coefficient of determination) between the fracture geometry parameters and the acidity of mine drainage. The results show that pH increased with increasing relative frequency of fracture strike, and decreased with increasing fracture density. The concentration of $SO^{2-}_4$ decreased with increasing relative frequency of fracture strike, and increased with increasing fracture density.

A Study on the Deformation Modulus for Tunnel Displacement Assessment in Multi-Jointed Rock Mass (다중절리 암반지층에서의 터널변위 산정을 위한 변형계수에 관한 연구)

  • Son, Moorak;Lee, Wonki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.17-26
    • /
    • 2017
  • Tunnel excavation in jointed rock mass induces a displacement along tunnel excavation line and its assessment is very important to ensure the stability of tunnel and a demanded space. Tunnel displacement is directly related to the deformation modulus of ground and therefore it is essential to know the value of the parameter. However, most rock masses where tunnels are constructed are generally jointed and it is difficult to find out the deformation modulus of jointed rock mass simply based on an homogeneous isotropic elastic medium because the deformation modulus is highly affected by joint condition as well as rock type. Accordingly, this study carried out extensive numerical parametric studies to examine the variation of deformation modulus in different joint conditions and rock types under the condition of tunnel excavation. The study results were compared with existing empirical relationships and also shown in the chart of deformation modulus variation in different jointed rock mass conditions.

Properties of Disconitinuity for the Seoul Granite in the Northeastern Part of Seoul City (서울시 북동부의 서울화강암에 대한 불연속면의 특성)

  • 정상원;정상용
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.167-178
    • /
    • 2002
  • Properties of discontinuity for Seoul Granite in northeastern part of Seoul City were analyzed by dividing structural domains into Surak and Bulam Mtn. areas. Important parameters measured among several engineering properties of a rock during tunnel excavation and road construction are as follows: 1) Orientation of joint, 2) joint spacing, 3) joint density, and 4) uniaxial compressive strength. Orientation, spacing, and density of joints can be directly measured during field investigation using scanline survey, circle-inventory method, and window survey. Uniaxial compressive strength of the rock was calculated by a simple correlation equation although it is originally necessary to prepare core samples in measuring it. Major orientations of joints measured from both areas are 3 sets of joints with different orientations. In other words, they are 2 sets of orthogonal joint and 1 set of sheet joint that is dipping at low angle, and have very similar orientations in both areas. Joint densities in both areas range from 0.039 and 0.066/cm, and average joint length are between 1.30 and 4.52m. Average joint spacing also has values from 10.3cm up to 59.6cm, and shows significant difference along specific orientation of scanlines measured. Values of uniaxial compressive strength calculated on the basis of Schmidt hammer rebound values range from 217 to 335 MPa, which indicates very strong rock type by classification of wall strength.

A New Algorithm for the Interpretation of Joint Orientation Using Multistage Convergent Photographing Technique (수렴다중촬영기법을 이용한 새로운 절리방향 해석방법)

  • 김재동;김종훈
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.486-494
    • /
    • 2003
  • When the orientations of joints are measured on a rock exposure, there are frequent cases that are difficult to approach by the surveyor to the target joints or to set up scanlines on the slope. In this study, to complement such limit and weak points, a new algorithm was developed to interpret joint orientation from analyzing the images of rock slope. As a method of arranging the multiple images of a rock slope, the multistage convergent photographing system was introduced to overcome the limitation of photographing direction which existing method such as parallel stereophotogrammetric system has and to cover the range of image measurement, which is the overlapping area between the image pair, to a maximum extent. To determine camera parameters in the perspective projection equation that are the main elements of the analysis method, a new method was developed introducing three ground control points and single ground guide point. This method could be considered to be very simple compared with other existing methods using a number of ground control points and complicated analysis process. So the global coordinates of a specific point on a rock slope could be analyzed with this new method. The orientation of a joint could be calculated using the normal vector of the joint surface which can be derived from the global coordinates of several points on the joint surface analyzed from the images.