• Title/Summary/Keyword: 절리면 전단강도

Search Result 66, Processing Time 0.032 seconds

The Effect of the Discontinuity Spacing/Length Ratio on Step-Path Failure of Jointed Rock Slopes (절리 암반 사면의 계단 경로 파괴에 미치는 불연속면 간격/길이 비의 영향)

  • Woon Sang Yoon
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.317-327
    • /
    • 2024
  • When a non-persistent joint system is formed in a large-scale rock slope, slope failure may occur due to presence of a the stepped sliding surface. Such a surface can be divided into joint-to-joint sliding surfaces or joint-to-rock bridge sliding surfaces. In the latter case, the rock bridge provides shear resistance parallel to the joint and tensile resistance perpendicular to the joint. The load of the sliding rock can lead to failure of the rock bridge, thereby connecting the two joints at each ends of the bridge and resulting in step-path failure of the slope. If each rock bridge on a slope has the same length, the tensile strength is lower than the shear strength, resulting in the rock bridges oriented perpendicular to the joint being more prone to failure. In addition, the smaller the ratio of discontinuity spacing to length, the greater the likelihood of step-path failure. To assess the risk of stepped sliding on a rock slope with non-persistent joints, stability analysis can be performed using limit equilibrium analysis or numerical analysis. This involves constructing a step-path failure surface through a systematic discontinuity survey and analysis.

Case Study on Failure of Rock Slope Caused by Filling Material (충전물에 의한 암반사면 붕괴사례)

  • Kim, Yong-Jun;Kim, Sun-Ki;Kim, Joo-Hwa
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.87-90
    • /
    • 2007
  • 셰일층으로 구성된 암반사변에서 층리면을 따라 대규모 평면파괴가 사연 중앙부에서 발생하였다. 현장조사시 파괴사면 주변은 지하수 누수 흔적과 점토층의 충전물이 존재하였으며, 파괴원인을 검토한 결과 층리면을 따라 형성된 점토 충전물의 낮은 전단강도와 강우시 인장균열내 형성된 수압에 의해 붕괴가 발생한 것으로 나타났다. 그리고 충전된 절리면의 전단강도 특성을 규명하기 위해서 모래, 점토의 인위적인 충전물을 이용하여 충전재 두께비에 따른 전단강도 특성을 고찰하였다.

  • PDF

A Study on the Reinforcement of Rock Faults by Grouting (암석 절리면의 그라우팅에 의한 보강에 관한 연구)

  • Chun, Byung-Sik;Choi, Joong-Keun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.4
    • /
    • pp.45-51
    • /
    • 2003
  • Grouting materials in rock is grouted as vein type along the fault surface by the other way for soil and allow a change of characteristics in rock faults as a result of that. Therefore the deformation characteristics of rock faults after grouting differ as a direction and characteristic of grouted fault and stress condition of field rock. Thereby it must be analyzed the effect for deformation of rock according to characteristics of rock faults and characteristics of grouting materials to accurately evaluate the reinforced effect by grouting. But grouting method used in field until present depends on experience of workers, and inspection for those effects are evaluated by measurement of elastic wave velocity, permeability tests and etc. in field. In this study, it was investigated that the effects for shear characteristics of maximum shear strength, residual shear strength and etc. by comparison and analysis of test results which were worked by direct shear tests of rock faults with changing a type of grouting materials and the grouting depth(t) for average width(a) of fault surface roughness when OPC(Ordinary Portland Cement) and Micro cement was grouted in fault surface of field rock to evaluate characteristicsof the shear deformation for rock fault surface of dam by grouting.

  • PDF

A New Quantification Method of Rock Joint Roughness (I) - A Close Assessment of Problems (암석 절리면 거칠기의 정량화에 대한 연구 (I) - 문제점의 규명)

  • Hong, Eun-Soo;Nam, Seok-Woo;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.269-283
    • /
    • 2005
  • To figure out the cause of underestimating the roughness and shear strength of rock joints suggested by numerous researchers, we analyzed roughness mobilization characteristics, characteristics of roughness parameters, effects of sampling interval, and waviness for roughness parameters. It was found out that lack of understanding of the roughness mobilization characteristics, inappropriate applications of roughness parameters, and effect of aliasing provide a main reasons for those problems. Several practical alternatives for improving those problems were suggested. As far as digitizing methods are concerned, we can find that using a 3D scanner can give a relatively effective result. To avoid aliasing, sampling interval should be less than one-quarter of the minimum asperities. As for the quantification of roughness, it was analyzed that the roughness parameter should be classified into two components depending on the scale of roughness to apply the shear strength model. For classifying the roughness, a framework of the criterion was suggested based on the plastic flow concept for the asperity failure, and the basis for proposing a new alternative shear strength model was established.

  • PDF

Relationship between shear behavior characteristics and mechanical parameters of fractures (절리면에서의 전단거동 특성과 역학적 파라미터들 간의 상관성)

  • 이종욱;이찬구;황신일;장천중;최원학
    • The Journal of Engineering Geology
    • /
    • v.3 no.1
    • /
    • pp.1-20
    • /
    • 1993
  • In this study, laboratory direct shear tests on 37 core specimens of gneiss were performed to examine the characteristics of shear behavior on fractures by using a portable direct shear box. The multi-stage shear testing method was used and normal stress applied to specimens ranges from 5.60 to $25.67kg/\textrm{cm}^2$. On the basis of test results, the empirical equations for the shear strength on fractures were suggested. The methanical parameters that can influence the shear behavior were derived and compared between each parameter. The values of shear stiffness have a trend showing rapid increase with the increase of normal stress and joint roughness coeffident, and the average value of secant shear stiffness for all specimens is about $110.68kg/\textrm{cm}^3$ under the range of normal stress applied in this test In addition, the relationship between the length of specimen and shear stiffness is inversely correlated due to the size effect. Therefore, even the specimens with the same joint roughness coeffident show the trend of decreasing shear stiffness in case of the specimens being the longer length.

  • PDF

Influence of Joint Secondary Roughness on Roughness Parameter in Direct Shear Test (직접전단시험에서 절리면의 2차 거칠기가 거칠기 정량화 파라미터에 미치는 영향)

  • Lee, Deok-Hwan;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.89-96
    • /
    • 2014
  • Rock joint surface roughness, which is known to be one of the most important factors for defining shear strength of rock mass, has been researched in various methods. However, approaches to separate a roughness into two groups (primary and secondary) for evaluating the roughness have been rarely performed. In this study, elements of secondary roughness were eliminated through direct shear testing with tensile joint specimen and they were quantified with joint parameters. It is revealed that roughness parameters decrease with increasing the normal stress and sampling intervals, except for the case in which the normal stress is larger than 1.5 MPa. Also it is analyzed that ratio of area reduction in the opposite direction of shearing decreases with increasing the roughness parameter.

Case Study on Failure of Rock Slope Caused by Filling Material of Clay (점토 충전물에 의한 암반사면 파괴사례 연구)

  • Kim, Yong-Jun;Lee, Young-Huy;Kim, Sun-Ki;Kim, Ju-Hwa
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.368-376
    • /
    • 2006
  • After heavy rainfall, It was occurred massive plane failure along bedding plane of shale in the center of rock slope. It was observed filling material and trace of underground water leakage around of the slope. We tried to find the cause for slope failure, and the result of examination showed that primary factors of the failure were low shear strength of clay filling material and water pressure formed within tension crack existed in the top of the slope. In this research, in order to examine the features of shear strength of filled rock joint, shear test of filled rock joint was conducted using of artificial filling material such as sand and clay..Also we made an investigation into the characteristics of shear strength with different thickness of filling materials.

Ideal Body Modeling of Rock Frost-thawing (이상물체를 이용한 암반의 동결융해 Modeling)

  • Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.12
    • /
    • pp.5-11
    • /
    • 2010
  • If the groundwater in rock joint is changed into ice, it induces the stress increment by volume increase. Also, if the ice is changed into groundwater again, the stress in joint decreases by volume decrease. The accumulated displacement and fatigues of joints are increased by the stress-hysterisis, induced from the continuous frost-thawing. Also the shear strength is decreased by them continuously. The stress-hysterisis is affected by the atmospheric temperature changes, whose behavior is visco-elasticity, usually. Therefore, Kelvin model could be used to analyze the frost-thawing behavior in winter. The measured data of total 5 points are examined, which are composed of 3 points of shallow joints and 2 points of deep joints. Because shallow weathered rocks have many joints, a lot of Kelvin model are connected and the behaviors are complicated. In case of deep joints, simple Kelvin model is applied and the behaviors are also simple.

Identification of Dominant Cause of Cut-Slope Collapse and Monitoring of Reinforced Slope Behavior (개착사면의 붕락요인 분석 및 보강거동 계측)

  • Cho, Tae-Chin;Lee, Sang-Bae;Lee, Guen-Ho;Hwang, Taik-Jean;Kang, Pil-Gue;Won, Byung-Nam
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.20-32
    • /
    • 2011
  • Failure aspects of cut-slope, which induce the sequential collapses during the excavation stage, have been analyzed. Slope rock structures are investigated by examining the orientations and positions of discontinuity planes calculated based on the BIPS image inside the boreholes. Drilled core log has been also used to identify the structural defects. Clay minerals of swelling potentials are detected through XRD analysis. Numerical analysis for slope stability has been performed by utilizing the joint shear strength acquired from the direct joint shear test. Cut-slope collapse characteristics have been studied by investigating the posture of failure-prawn joint planes and the stability of tetrahedral blocks of different sizes. Cross-section analysis has been also performed to analyze the cut-slope behavior and to estimate the amount of reinforcement required to secure the stability of cut-slope. Behavior of reinforced cut-slope is also investigated by analyzing the slope monitoring data.

Estimation of Safety Factor for a Jointed Rack Slope by DEM (개별요소법에 의한 절리 암반사면의 안전율 평가)

  • 유광호;박연준
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.241-247
    • /
    • 2001
  • 절리가 발달한 암반사면의 경우, 토사사면의 안전율 평가를 위해 널리 이용되는 한계평형법을 이용한 해석법은 파괴 활동면을 가장할 수 없기 때문에 사용이 곤란하다. 한편, 비등방 탄소성 모델(편재절리모델)을 사용하여 2조의 절리군을 가진 암반사면의 안전율을 계산할 수 있는 방법이 개발되었지만, 이 방법은 개별절리를 효과적으로 고려하지 못한다. 본 연구에서는 개별절리를 고려한 불연속체 해석에 의한 암반사면의 안정성 해석시 사면의 안전율을 평가하는 기법을 개발하였다. 이를 위해, 절리 전단강도 감소기법을 적용하였으며, UEDC의 내장 언어인 FISH를 사용하여 프로그램을 개발하였다. 또한 실제 절리 암반사면을 대상으로 절리를 측정하고, 개발된 기법에 의한 사면의 안전율을 구하였으며, 동일한 사면에 대해 등가연속체로 가정한 편재절리모델 해석을 수행하여 결과를 비교하였다.

  • PDF