• Title/Summary/Keyword: 절대상시유계

Search Result 3, Processing Time 0.016 seconds

An Adaptive Fuzzy Backstepping Approach to Robust Tracking Control of a Single-Link Flexible Joint Robot (적응형 퍼지 백스테핑 방식을 이용한 단일축 유연관절 로봇의 강인 제어)

  • 김은태;이희진
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.1-12
    • /
    • 2004
  • This paper presents an adaptive fuzzy backstepping (AFB) controller for a single-link flexible joint robot in the Presence of Parametric uncertainties and external disturbances. Adaptive fuzzy logic systems are used as universal approximators to counteract the model uncertainties coming from robot dynamics and to compensate for the nonlinearities coming from adaptive backstepping method. The approach suggested herein does not require neither an additional supervisory nor a robustifying controller and guarantees that tracking error is uniformly ultimately bounded (UUB) within a sufficiently small residual set. Finally, a simulation result is given to demonstrate the robust tracking performance of proposed design method.

Tracking Control of an Uncertain Robot via Neural Network (신경회로망을 이용한 불확실한 로봇 추적 제어)

  • Kim, Eun-Tai;Lee, Hee-Jin;Kim, Seung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.297-300
    • /
    • 2001
  • 본 논문에서는 로봇 매니퓰레이터의 제어에 사용할 수 있는 신경망 외란 관측기를 제안하도록 한다. 제안한 신경망 외란 관측기는 다층신경 망의 구조로 신경망 외란관측기의 오차와 제어 오차가 충분히 작은 콤팩트 집합에 절대 상시 유계된다. 본 논문에서 제안하는 신경망 외란 관측기는 기존의 적응 제어기의 단점을 해결한 방식으로 복잡한 회귀 모델을 필요로 하지 않는다. 끝으로 제안한 방식을 3관절 로봇에 적용하여 그 타당성을 확인한다.

  • PDF

Motion Control of an Uncertain robotic Manipulator System via Neural Network Disturbance Observer (신경회로망 외란 관측기를 이용한 불확실한 로봇 시스템의 운동 제어)

  • Kim, Eun-Tai;Kim, Han-Jung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.4
    • /
    • pp.6-15
    • /
    • 2002
  • A neural network disturbance observer for a robotic manipulator is derived in this paper. The neural network used as the disturbance observer is a feedforward MLP(multiple-layered perceptron) network. The uniform ultimate boundness(UUB) of the proposed neural disturbance observer and the control error within a sufficiently small compact set is guaranteed. This neural disturbance observer method overcomes the disadvantages of the existing adaptive control methods which require the tedious analysis of the regressor matrix of the given manipulator. The effectiveness of the proposed neural disturbance observer is demonstrated by the application to the three-link robotic manipulator.