• Title/Summary/Keyword: 전해 이온화

Search Result 214, Processing Time 0.03 seconds

1-Ethyl-1-Methyl Piperidinium Bis(Trifluoromethanesulfonyl)Imide as a Co-Solvent for Li-ion Battery Electrodes (혼합 용매로서의 1-Ethyl-1-Methyl Piperidinium Bis(Trifluoromethanesulfonyl)Imide의 리튬 이차 전지용 전극별 거동)

  • Koh, Ah Reum;Kim, Ketack
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.103-110
    • /
    • 2014
  • In the study, a room temperature ionic liquids as a co-solvent was used to evaluate the feasibility with various electrodes in Li-ion batteries. 1-Ethyl-1-methyl piperidinium bis(trifluoromethanesulfonyl) imide(PP12 TFSI) is an ionic liquid that melts at $85^{\circ}C$. Pure PP12 TFSI is not able to be used as an electrolyte because it is a solid salt at room temperature. PP12 TFSI is mixed with EC/DEC(1/1 vol.%) to prepare mixed solvents. The electrolyte 1.5M $LiPF_6$ in a mixed solvent having 44 wt.% PP12 TFSI is prepared to evaluated the various electrodes. The electrolytes provides good cycles life of cells with $LiNi_{0.5}Mn_{1.5}O_4(LNMO)$, $LiFePO_4(LFP)$, $Li_4Ti_5O_{12}(LTO)$ and artificial graphite. Further improvement of the cell performances can be accomplished by enhancing wettability of electrolytes to electrodes.

Polymer-Ceramic Composite Gel Polymer Electrolyte for High-Electrochemical-Performance Lithium-Ion Batteries (고성능 리튬 이온전지를 위한 폴리머-세라믹 복합 겔 고분자 전해질)

  • Jang, So-Hyun;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.4
    • /
    • pp.123-128
    • /
    • 2016
  • In this study, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP)-based gel polymer electrolyte incorporating nano-size $Al_2O_3$ ceramic particle was prepared by electrospinning. The gel polymer electrolyte (GPE) incorporated with $Al_2O_3$ ceramic particle showed higher ionic conductivity of $9.5{\times}10^{-2}Scm^{-1}$ than pure PVdF-HFP GPE without ceramic particle and improved the electrochemical stability up to 5.2 V. The GPEs were assembled with $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (NMC) cathode for electrochemical test. The GPE batteries at 0.1 C-rate delivered $168.2mAh\;g^{-1}$ for pure GPE and $189.6mAh\;g^{-1}$ for hybrid GPE, respectively. Therefore, the incorporation of high dielectric constant ceramic particle will be good strategy to enhance the stability and electrochemical properties of lithium ion gel polymer batteries.

Characterization of Polyolefin Separator Support Membranes with Hydrophilic Coatings (폴리올레핀계 다공성 세퍼레이터 지지체 막의 친수 코팅에 따른 특성 평가)

  • Park, Yun Hwan;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.92-103
    • /
    • 2017
  • In this study, electrochemical performance of the hydrophilized separator for the lithium ion battery is studied. The polyolefin based material used as the separator for the lithium ion battery is hydrophobic, and the electrolytic solution using a carbonate-based organic solvent is hydrophilic. Therefore, the polyolefin separator is hydrophilized using various hydrophilic polymers because lithium ion battery uses an aqueous electrolyte solution. In order to evaluate change of the coated separator, the performances of separator in terms of surface morphology, porosity and the wettability are investigated. Finally, the resistance and the ionic conductivity of separator coated with lithium ion are measured to evaluate the performance of lithium ion battery. Separator coated with PMVE shows good hydrophilicity and excellent ionic conductivity because the porosity of the separator is maintained. We can confirm that this property makes potential candidates for lithium ion battery.

Types of Middle School Students' Conceptual Change on the Concept of Electrolyte and Ion (전해질과 이온 개념에 대한 중학생들의 개념변화 유형)

  • Shin, Sung-Hee;Park, Hyun Ju;Yang, Kiyull
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.48-58
    • /
    • 2016
  • This study was to investigate the types of middle school students’ conceptual change on electrolyte and ion. Data were collected by pre- and post- exams of 9th grade students’ conceptions of electrolyte and ion, and by semi-structured interviews with nine students served as case representatives who participated in the study. All interviews were transcribed, analyzed and classified by conceptual change according to the responses of the students. The results are as follows: First, students’ ion conceptual change was classified into four types; simple conception to sophisticated conception, incomplete conception to scientific conception, misconception to confused conception, and misconception to misconception. Most students had difficulty in understanding of the concepts of ion in pre- and post-class, and they failed to distinguish between atom and subatomic particles precisely. Second, students’ conceptual change of electrolyte was also classified into the following four types; partially scientific conception to sophisticated conception, misconception to partial misconception, incomplete conception to incomplete conception and misconception to misconception. The study found that students had difficulty distinguishing the difference between electrolytes and nonelectrolytes. Third, students also had difficulty understanding the concepts on particles because they learned the ‘electrolyte and ion’ unit so quickly in the second semester of 9th grade in order to fill in the academic reports for applying high schools. Furthermore, some suggestions were made based on the results for understanding scientific concepts on particles.

Proton Exchange Membrance Fuel Cell (고분자 전해질형 연료전지)

  • Kho, Y.T.;Lee, J.H.
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.574-578
    • /
    • 1992
  • 고분자 전해질형 연료전지(PEMFC)는 전해질로서 수소이온 교환 특성을 갖는 폴리머를 사용한 연료전지로서 다른 유형의 연료전지에 비하여 에너지 변환 특성이 우수할 뿐만 아니라 전력밀도 특성이 우수한 유형의 연료전지이다. 전해질 폴리머로서는 Perfluorosulfonate 멤브레인이 사용되고 있으며, 전지의 작동 원리는 인산형 연료전지와 동일하다. 본 총설 논문에서는 PEMFC의 작동 원리 및 기능상의 설명은 지양하고 고전력 밀도가 가능한 이유와 지금까지의 개발 역사 및 향후 개발 방향 등에 대해서 설명하고자 한다.

  • PDF

Conductances of 1-1 Electrolytes in Ethylene Carbonate-Acetone Mixtures (탄산에틸렌-아세톤 혼합용액에서의 1-1 전해질의 전기전도도)

  • Si-Joong Kim;Young-kook Shin
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.178-182
    • /
    • 1983
  • The conductances of sodium, potassium, ammonium, tetramethylammonium, and tetraethylammonium iodides, picrates(Pic) of sodium and potassium, and tetrabutylammonium tetraphenyl-boride have been measured in ethylene carbonate-acetone mixtures at $25{\circ}C$. The limiting equivalent conductances of the electolytes were computed by Fuoss-Kraus equation and the order was $(C_4H_9)_4NB(ph)_4 at any composition of the mixtures. The dissociation constants of the salts showed that the mixtures are good ionizing solvents for the salts. The order of limiting ionic equivalent conductance, $Na^+, is consistent with exactly the reverse order found for solvation number. Effective solvated radii calibrated by the Nightingale method showed that picrate ion seems to be unsolvated and that iodide ion seems to be solvated to some extent in the mixtures.

  • PDF