최근 연구되고 있는 TSV(Through Silicon Via) 기술은 Si 웨이퍼 상에 직접 전기적 연결 통로인 관통홀을 형성하는 방법으로 칩간 연결거리를 최소화 할 수 있으며, 부피의 감소, 연결부 단축에 따른 빠른 신호 전달을 가능하게 한다. 이러한 TSV 기술은 최근의 초경량화와 고집적화로 대표되는 전자제품의 요구를 만족시킬 수 있는 차세대 실장법으로 기대를 모으고 있다. 한편, 납땜 재료의 주 원료인 주석은 주로 반도체 소자의 제조, 반도체 칩과 기판의 접합 및 플립 칩 (Flip Chip) 제조시의 범프 형성 등 반도체용 배선재료에 널리 사용되고 있다. 최근에는 납의 유해성 때문에 대부분의 전자제품은 무연솔더를 이용하여 제조되고 있지만, 주석을 이용한 반도체 소자가 고밀도화, 고 용량화 및 미세피치(Fine Pitch)화 되고 있기 때문에, 반도체 칩의 근방에 배치된 주석으로부터 많은 알파 방사선이 방출되어 메모리 셀의 정보를 유실시키는 소프트 에러 (Soft Error)가 발생되는 위험이 많아지고 있다. 이로 인해, 반도체 소자 및 납땜 재료의 주 원료인 주석의 고순도화가 요구되고 있으며, 특히 알파 방사선의 방출이 낮은 로우알파솔더 (Low Alpha Solder)가 요구되고 있다. 이에 따라 본 연구는 4인치 실리콘 웨이퍼상에 직경 $60{\mu}m$, 깊이 $120{\mu}m$의 비아홀을 형성하고, 비아 홀 내에 기능 박막증착 및 전해도금을 이용하여 전도성 물질인 Cu를 충전한 후 직경 $80{\mu}m$의 로우알파 Sn-1.0Ag-0.5Cu 솔더를 접합 한 후, 접합부 신뢰성 평가를 수행을 위해 고속 전단시험을 실시하였다. 비아 홀 내 미세구조와 범프의 형상 및 전단시험 후 파괴모드의 분석은 FE-SEM (Field Emission Scanning Electron Microscope)을 이용하여 관찰하였다. 연구 결과 비아의 입구 막힘이나 보이드(Void)와 같은 결함 없이 Cu를 충전하였으며, 고속전단의 경우는 전단 속도가 증가할수록 취성파괴가 증가하는 경향을 보였다. 본 연구를 통하여 전해도금을 이용한 비아 홀 내 Cu의 고속 충전 및 로우알파 솔더 볼의 범프 형성이 가능하였으며, 이로 인한 전자제품의 소프트에러의 감소가 기대된다.
본 연구에서는 계면활성제를 이용하여 초임계이산화탄소와 전해도금액의 매크로에멀젼을 형성한 후 양극과 음극을 통해 통전시켜 초임계에멀젼 전해도금을 수행하였다. 계면활성제로는 친이산화탄소기와 친수기를 동시에 지닌 sodium salt of bis (2,2,3,3,4,4,5,5-octafluoro-1-pentanol) sulfosuccinate를 사용하였으며 (+)극과 (-)극으로 니켈판과 구리판을 각각 사용하였다. 초임계매크로에멀젼 상태에서 도금된 니켈표면과 기존의 상압 상태에서 도금된 니켈표면을 비교해 본 결과 이산화탄소/니켈도금액 매크로에멀젼에 의해 도금된 니켈표면은 기존 방법에 의한 것보다 더 균일하였다. 계면활성제의 농도와 도금액 양이 도금에 미치는 영향을 살펴보기 위하여 도금액에 첨가한 계면활성제의 농도를 2, 4, 7 wt% 변화시켰으며 도금 반응셀 내에서 차지하는 도금액의 부피를 10 vol%에서 70 vol%까지 증가시켰다. 그리고 연속상의 영향을 알아보기 위하여 초임계이산화탄소 대신에 프로판을 사용하여 그 결과를 살펴보았다. 매크로에멀젼이 형성되는 농도 이상에서는 계면활성제의 농도가 높아질수록 전류량과 도금되는 니켈 양이 모두 감소하였으며, 도금액의 부피가 증가할수록 전류량과 전기전도도가 높아지고 도금되는 니켈 양이 증가하였다. 또한, 연속상의 경우, 프로판보다 이산화탄소가 우수한 도금효과를 보임을 알 수 있었다.
본 연구에서는 퀴노잘린(quinoxaline)과 페로시아나이드(ferrocyanide)를 활물질로 활용한 알칼리 전해질 기반 수계 유기 레독스 흐름전지에 대해 다양한 첨가제를 적용하여 성능을 비교하는 실험을 진행하였다. 퀴노잘린(quinoxaline)의 경우 염화칼륨(KCl) 전해질보다는 수산화칼륨(KOH) 전해질에서의 레독스 전위(-0.97 V)가 더 작은 위치에 있으며, 이에 따라 KOH 전해질에 대해 페로시아나이드와 조합을 이루었을 때, 셀 전압 값은 1.3 V로 높게 나타났다. 상용 양이온 교환막 중 하나인 Nafion 117 멤브레인을 사용하였을 때, 퀴노잘린(quinoxaline)의 부반응 현상을 반전지 상에서 관찰할 수 있었으며, 이에 따라 충방전 자체가 잘 되지 않는 문제점이 있다. 따라서, 문제점이 되는 퀴노잘린(quinoxaline)의 부반응을 해결하기 위해 친전자체와 친핵체 중 하나인 포타슘설페이트($K_2SO_4$)와 포타슘아이오다이드(KI)를 사용하였으며, 포타슘아이오다이드(KI)를 사용하였을 때, 용량 손실율 측면에서 포타슘 아이오다이드(KI)를 첨가제로 넣지 않았을 때($0.29Ah{\cdot}L^{-1}per\;cycle$) 보다 더 낮은 용량 손실율($0.21Ah{\cdot}L^{-1}per\;cycle$)로 더 높은 용량 유지율을 보였다.
본 연구에서는 유기물인 안트라퀴논(AQDS)와 템포(TEMPO)를 활물질로 사용하고 N 중성 전해질 기반 수계 유기레독스 흐름전지 성능이 멤브레인에 따라 어떻게 영향을 받는지 분석하였다. 안트라퀴논과 템포 모두 중성 전해질인 염화칼륨(KCl) 전해질에 대해 높은 전자전달성(0.068 V의 산화 반응 및 환원 반응의 피크 전위차) 및 셀전압(1.17 V)을 얻을 수 있었다. 성능비교를 위해 사용한 멤브레인으로, 상용 양이온 교환막 중 하나인 Nafion 212를 사용하였을 때, 0.1 M 활물질을 1 M 염화칼륨 전해질에 용해해서 작동한 레독스 흐름전지 완전지 테스트를 통해, 전류효율 97%, 전압 효율 59%의 성능을 나타내었지만, 방전 용량(discharge capacity)은 4 사이클에서 $0.93Ah{\cdot}L^{-1}$로 이론 용량($2.68Ah{\cdot}L^{-1}$)의 35%를 도달하였으며, 총 10사이클 동안 방전 용량의 용량 손실율(capacity loss rate)은 $0.018Ah{\cdot}L^{-1}/cycle$ 이다. 그 외에도 Nafion 117 멤브레인, SELEMION CSO 멤브레인을 사용하여 단전지 성능을 테스트하였을 때, 오히려 저항 증가 및 투과 유도로 인해 더 큰 용량 손실을 이끌었다.
알루미늄-공기 전지의 성능을 향상시키기 위해서는 전극의 전기화학적 특성에 미치는 전해질의 영향을 이해하는 것이 매우 중요하다. 본 연구에서는 NaCl, LiCl, CaCl2, ZnCl2와 같이 동일한 음이온을 가지나 양이온이 다른 전해질을 사용하여 음극과 양극에서 진행되는 전기화학적 산화·환원 반응에 미치는 전해질 양이온의 영향에 관하여 조사하였다. 전극의 방전 전위 및 비용량에 전해질 양이온이 영향을 준다는 것이 방전 시험, 주사전자현미경과 X-선 회절 분석에 의해 확인되었다. NaCl과 LiCl 전해질 용액 중에서 상대적으로 높은 셀 전압과 비용량이 얻어졌다. 양극 표면에는 Ca2+와 Zn2+ 이온에 의해 전극 반응을 방해하는 침전물이 생성되었으며, 이로 인해 양극 성능이 저하되었다. 게다가 Ca2+ 이온은 음극의 부동태화를 유발하면서 음극의 성능 저하를 촉진시켰다. 이것은 전해질의 양이온이 양극과 음극의 전기화학적 성능에 각각 다른 영향을 주고 있음을 시사하는 것이다.
전기이중층 축전용량(electric double layer capacitance)과 유사축전용량(pseudo-capacitance)을 함께 갖는 하이브리드 전기화학 축전기에 대한 연구를 수행하였다. 양극은 $Ni(OH)_2$ 활성탄소가 복합된 전극을 사용하였으며 음극은 활성탄소를 활물질로 사용하므로써 비대칭 전극 구조를 갖는다. 셀 실험을 위하여 $5\times5cm^2$ 크기인 전극을 제작 사용하였다. Cyclic voltammetry측정 및 교류 임피던스 측정실험을 통하여 각각의 셀들이 갖는 전기화학적 거동을 조사하였고 충 방전 실험을 통하여 양극과 음극의 최적 질량비를 조사하였다.
High-temperature steam electrolysis (HTSE) using solid oxide cell is a challenging method for highly efficient large-scale hydrogen production as a reversible process of solid oxide fuel cell (SOFC). The overall efficiency of the HTSE hydrogen and synthesis gas production system was analyzed thermo-electrochemically. A thermo-electrochemical model for the hydrogen and synthesis gas production system with solid oxide electrolysis cell (SOEC) and very high temperature gas-cooled reactor (VHTR) was established. Sensitivity analyses with regard to the system were performed to investigate the quantitative effects of key parameters on the overall efficiency of the production system. The overall efficiency with SOEC and VHTR was expected to reach a maximum of 58% for the hydrogen production system and to 62% for synthesis gas production system by improving electrical efficiency, steam utilization rate, waste heat recovery rate, electrolysis efficiency, and thermal efficiency. Therefore, overall efficiency of the synthesis production system has higher efficiency than that of the hydrogen production system.
산화물 형태의 사용후핵연료를 용융염에서 금속 형태로 전환하여, 발열량, 부피 및 방사능을 1/4로 감소시킬 수 있는 전기화학적 금속전환 공정을 개발하고, 5kg $U_3O_8$/Batch 규모의 mock-up 실험을 수행하였다. 본 연구에서는 전해 셀의 운전변수를 해석하였으며, 아울러 hot test를 위한 장치개발 연구도 병행하였다. 전기화학적 금속전환 공정을 이용하여 $U_3O_8$ 형태의 천연우라늄 분말을 99% 이상 금속전환할 수 있었으며, 또한 20kg $U_3O_8$/batch 규모 장치의 설계자료를 산출할 수 있었다.
2-Amino-5-Substituted-1,3,4-Oxadiazoles의 합성은 비분활된 셀에서 포텐셜 전기분해의 제어하에 백금전극의 세미카바존 전기적 산화로부터 수행되었다. 이것은 유기화학 합성분야에서 환경적으로 양호한 방법이다. 아세트산 및 아세트니트릴, 무수용매와 리튬 과염소산염 이 전기적 산화에서 전기분해을 위하여 사용 되어졌다. 생성물은 IR, $^1H$-NMR, $^{13}C$-NMR 그리고 원소분석을 통해 구조분석 하였다.
전해 캐패시터와 supercapacitor의 특성을 함께 가지는 하이브리드 캐패시터의 용량은 표면이 산화물로 피복된 양극에 의해서 좌우된다 본 연구에서는 고전압 하이브리드 슈퍼캐패시터의 제조를 위해 양극의 용량 최적화를 수행하였다. $40{\mu}m$의 입자경을 갖는 알루미늄 분말과 NaCl분말을 4:1의 무게비로 혼합하여 디스크 형태의 전극을 만들고 열처리를 하였다. 열처리 후 $50^{\circ}C$의 증류수에서 NaCl을 용해시켜 열처리 온도에 따른 용량과 저항을 비교하였다. 최적의 열처리 과정을 거친 후 electropolishing 및 화학처리, 1차 및 2차 에칭을 단계별로 행하였고 각각의 단계에서 최적의 조건을 조사하였다 각각의 단계에서의 용량과 저항은 ac impedance analyzer를 사용하여 측정하였으며 전극의 표면은 SEM을 이용하여 관찰하였다. 2차 에칭 후 내전압이 300V급인 전극으로 만들기 위하여 365V로 양극산화 시켰으며, 산화된 알루미늄 디스크 전극을 사용하여 단위 셀을 제조하여 주파수에 따른 용량과 저항 특성을 기존의 300V급 알루미늄 전해 캐패시터와 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.