Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2022.12.02.134

Effects of Electrolyte Cation on Electrochemical Properties of Negative and Positive Electrodes in Aluminum-Air Batteries  

Lee, Seunghwan (Dept. of Energy Systems Engineering, Soonchunhyang University)
Yoon, Sungjae (Dept. of Energy Systems Engineering, Soonchunhyang University)
Choi, Weon-Kyung (Dept. of Management Engineering, Dankook University)
Baeg, Changhyun (Lab, Alus Co., Ltd.)
Jeong, Soon-Ki (Dept. of Energy Systems Engineering, Soonchunhyang University)
Publication Information
Journal of Convergence for Information Technology / v.12, no.2, 2022 , pp. 134-141 More about this Journal
Abstract
To improve the performance of aluminum-air batteries, it is very important to understand the effect of electrolytes on the electrochemical properties of electrodes. In this study, the effects of electrolyte cations on the electrochemical redox reactions proceeding at the negative and positive electrodes were investigated using electrolytes having the same anion but different cations such as NaCl, LiCl, CaCl2, and ZnCl2. It was confirmed by discharge test, scanning electron microscopy and X-ray diffraction analysis that electrolyte cations affect the discharge potential and specific capacity of the electrode. Precipitates were formed on the surface of the positive electrode by Ca2+ and Zn2+ ions, resulting in degradation of the performance of the positive electrode. In addition, Ca2+ ions passivated the negative electrode and accelerated the performance degradation. This suggests that the positive ions of the electrolyte have different effects on the electrochemical performance of the positive and negative electrodes.
Keywords
Aluminum-air battery; Negative electrode; Positive electrode; Electrolyte; Cation; Electrochemical redox reaction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. Zhang, H. Zhao, F. Liang, W. Ma & Y. Lei. (2021). Nanostructured Arrays for Metal-Ion Battery and Metal-Air Battery Applications. Journal of Power Sources, 493, 229722. DOI : 10.1021/acs.chemrev.9b00628   DOI
2 X. Jia, C. Liu, Z. G. Neale, J. Yang & G. Cao. (2020). Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chemical Reviews, 120(15), 7795-7866. DOI : 10.1021/acs.chemrev.9b00628   DOI
3 J. Fu, R. Liang, G. Liu, A. Yu, Z. Bai, L. Yang, & Z. Chen. (2013). Recent Progress in Electrically Rechargeable Zinc-Air Batteries. Advanced Materials, 31(31), 1805230. DOI : 10.1002/adma.201805230   DOI
4 D. Y. Momodu, F. Barzegar, A. Bello, J. Dangbegnon, T. Masikhwa, J. Madito & N. Manyala. (2015). Simonkolleite-Graphene Foam Composites and Their Superior Electrochemical Performance. Electrochimica Acta, 151, 591-598. DOI : 10.1016/j.electacta.2014.11.015   DOI
5 J. Zhang, Q. Zhou, Y. Tang, L. Zhang & Y. Li. (2019). Zinc-Air Batteries: Are They Ready for Prime Time?. Chemical Science, 10, 8924-8929. DOI : 10.1039/C9SC04221K   DOI
6 W. Li, C. Han, K. Zhang, S. Chou & S. Dou. (2021). Strategies for Boosting Carbon Electrocatalysts for the Oxygen Reduction Reaction in Non-Aqueous Metal-Air Battery Systems. Journal of Materials Chemistry A, 9(11), 6671-6693. DOI : 10.1039/D1TA00203A   DOI
7 X. Chen, Q. Zou, Z. Shi, Q. Le, M. Zhang & A. Atrens. (2021). The Discharge Performance of an As-Extruded Mg-Zn-La-Ce Anode for the Primary Mg-Air Battery. Electrochimica Acta, 404, 139763. DOI : 10.1016/j.electacta.2021.139763   DOI
8 M. Tamez & J. H. Yu. (2007). Aluminum-Air Battery. Journal of Chemical Education, 84(12), 1936A-1936B. DOI : 10.1021/ed084p1936A   DOI
9 C. Chakkaravarthy. A. K. Abdul Waheed & H. V. K. Udupa. (1981). Zinc-Air Alkaline Batteries-A review. Journal of Power Sources, 6(3), 203-228. DOI : 10.1016/0378-7753(81)80027-4   DOI
10 R. Buckingham, T. Asset & P. Atanassov. (2021). Aluminum-Air Batteries: A Review of Alloys, Electrolytes and Design. Journal of Power Sources, 498, 229762. DOI : 10.1016/j.jpowsour.2021.229762   DOI
11 K. T. Chau, Y. S. Wong & C. C. Chan. (1999). An Overview of Energy Sources for Electric Vehicles. Energy Conversion and Management, 40(10), 1021-1039. DOI : 10.1016/S0196-8904(99)00021-7   DOI
12 L. D. Chen, J. K. Norskov & A. C. Luntz. (2015). Al-Air Batteries: Fundamental Thermodynamic Limitations from First-Principles Theory. The Journal of Physical Chemistry Letters, 6, 175-179. DOI : 10.1021/jz502422v   DOI
13 Q. Li & N. J. Bjerrum. (2002). Aluminum as Anode for Energy Storage and Conversion: A Review. Journal of Power Sources, 110(1), 1-10. DOI : 10.1016/S0378-7753(01)01014-X   DOI
14 S. Yang & H. Knickle. (2002). Design and Analysis of Aluminum/Air Battery System for Electric Vehicles. Journal of Power Sources, 112, 162-173. DOI : 10.1016/S0378-7753(02)00370-1   DOI
15 X. Liu, P. Zhang, J. Xue, C. Zhu, X. Li & Z. Wang. (2021). High Energy Efficiency of Al-Based Anodes for Al-Air Battery by Simultaneous Addition of Mn and Sb. Chemical Engineering Journal, 417, 128006. DOI : 10.1016/j.cej.2020.128006   DOI
16 M. Mokhtar, M. Z. M. Talib, E. H. Majlan, S. M. Tasirin, W. M. F. W. Ramli, W. R. W. Daud, & J. Sahari. (2015). Recent Developments in Materials for Aluminum-Air Batteries: A Review. Journal of Industrial and Engineering Chemistry, 32, 1-20. DOI : 10.1016/j.jiec.2015.08.004   DOI
17 R. Mori. (2013). A New Structured Aluminium-Air Secondary Battery with a Ceramic Aluminium Ion Conductor. RSC Advances, 3, 11547-11551. DOI : 10.1039/C3RA42211A   DOI
18 N. Chawla. (2019). Recent Advances in Air-Battery Chemistries. Materials Today Chemistry, 12, 324-331. DOI : 10.1016/j.mtchem.2019.03.006   DOI
19 D. Cicolin, M. Trueba, & S. P. Trasatti. (2014). Effect of Chloride Concentration, pH and Dissolved Oxygen, on the Repassivation of 6082-T6 Al Alloy. Electrochimica Acta, 124, 27-35. DOI : 10.1016/j.electacta.2013.09.003   DOI
20 Z. Wu, H. Zhang, K. Qin, J. Zou, K. Qin, C. Ban, J. Cui & H. Nagaumi. (2020). The Role of Gallium and Indium in Improving the Electrochemical Characteristics of Al-Mg-Sn-based alloy for Al-air battery anodes in 2 M NaCl solution. Journal of Materials Science, 55, 11545-11560. DOI : 10.1007/s10853-020-04755-8   DOI
21 H. Lee, I. Park, S. Choi & J. Kim. (2017). Effect of Chloride on Anodic Dissolution of Aluminum in 4 M NaOH Solution for Aluminum-Air Battery. Journal of The Electrochemical Society, 164(4), A549. DOI : 10.1149/2.0171704jes   DOI