• Title/Summary/Keyword: 전파지연오차

Search Result 40, Processing Time 0.03 seconds

A study on the velocity characteristics of surface acoustic wave in PSS-PZT ceramics (PSS-PZT계 세라믹스의 탄성표면파 속도특성에 관한 연구)

  • 강진규;백동수;김준한;홍재일;박창엽
    • Electrical & Electronic Materials
    • /
    • v.6 no.2
    • /
    • pp.109-114
    • /
    • 1993
  • 본 논문에서는 0.05Pb(Sn$_{1}$2/Sb$_{1}$2/)-0.35PbTiO$_{3}$-0.60PbZrO $_{3}$+0.4[wt%] MnO$_{2}$ 조성을 갖는 3성분계 압전세라믹스에 Cr$_{2}$O$_{3}$ 의 첨가량을 변화시켜서 지연선을 제작하고 탄성표면파를 여기시켜 전파속도를 측정하였으며 EMMAS 기준에 따라 각 시편의 재료정수를 측정하고 이를 압전방정식에 적용하여 매질에 따라 여기되는 탄성표면파의 계산속도를 이론적으로 산출한 후 이를 지연선에서 측정된 실험속도와 비교하여 재료의 특성이 탄성표면파의 전파특성에 미치는 영향을 조사하였다. 그 결과 SAW 지연선에서 측정된 탄성표면파는 Generalized Rayleigh Wave였으며 재료의 특성이 우수한 시편일 수록 계산속도와 측정속도와의 차가 적었던 것으로 나타났고 오차한도는 평균 99.39[%]였으므로 실험속도 측정방법이 feed through 현상없이 우수한 측정방법이었음을 알 수 있었다.

  • PDF

A STUDY ON THE KOREAN IONOSPHERIC VARIABILITY (한반도 전리층의 변화현상 연구)

  • 배석희;최규홍;육재림;김홍익;민경욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.52-68
    • /
    • 1992
  • The ionosphere in accordance with solar activity can affect the transmission of radio waves. The effect of the ionosphere on the radio wave propagation are scattering of radio waves, attenuation, angle error, ranging error, and time delay. The present study is based on the Korean ionospheirc data obtained at the AnYang Radio Research Laboratory from January 1985 through October 1989. The data are analyzed to show the daily and the annual variations of the ionosphere. The data are also used to simulate the density distribution of the Korean ionosphere following the Chapman law.

  • PDF

Radio Lacation using Decision Feedback Method (결정 궤환 방법을 이용한 무선측위)

  • 김유신;유흥렬;이재진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.5A
    • /
    • pp.801-808
    • /
    • 2001
  • 본 논문에서는 전파의 도달시간을 이용한 이동통신 측위 시스템에서 사용되는 직접해, 최소 자승, 테일러 시리즈 그리고 찬 알고리즘의 성능을 분석하고, 각 알고리즘을 사용하여 계산된 결과를 궤환시켜 이동국의 위치를 재계산함으로써 보다 향상된 측위를 할 수 있는 결정 궤환 방법을 제안한다. 제안된 방법은 규칙 7셀 좌표와 불규칙 셀 좌표를 이용하여 이동국을 위치시킨 후, 전파의 지연시간에 따른 측위오차와 표준편차 그리고 각 알고리즘별 발산횟수를 조사하였으며, 실험결과 결정 궤환 방법을 사용하였을 경우 기존의 방법보다 향상된 성능을 보였다.

  • PDF

Inland ASF Measurement by Signal of the 9930M Station (9930M국 로란-C 신호를 이용한 내륙 ASF 측정 연구)

  • Yang, Sung-Hoon;Lee, Chang-Bok;Lee, Jong-Koo;Kim, Young-Jae;Lee, Sang-Jeong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.8
    • /
    • pp.603-607
    • /
    • 2010
  • The LORAN system had been used widely and it was an essential navigation aid for ships in the ocean until the GPS is adopted actively. In particular, it was essential functionality for the ships to sail the oceans. According to the advancement of industry, however, the current accuracy of traditional Loran is insufficient for the utilization of harbour approach, land navigation, and the field of survey and timing. Therefore it is necessary that the study on the improvement of the positioning accuracy of Loran. The one of the improving methods is to measure and compensate the propagation time delay between the transmitter and user's receiver, which is called as additional secondary factor (ASF). In this study, we measured the ASF between the Pohang master transmitting station (9930M) and four points where locate within 33 km apart from the transmitting station, using the measuring technique of the absolute time delay without a time of coincidence (TOC) table. As the result of measurement, the ranging error caused by the propagation delay was about 210 m at 33 km, however it can be reduced up to 40 m with ASF compensation.

Implementation of Propagation delay estimation model of medium frequency for positioning (측위 적용을 위한 중파의 전파 지연 예측 모델 구현)

  • Yu, Dong-Hui
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.2
    • /
    • pp.111-118
    • /
    • 2009
  • Against Anomaly of GPS, there are several projects of independent satellite navigation systems like Galileo of Europe and QZSS of Japan and modernization of terrestrial navigation system like Loran. In domestic, the need of independent navigation system was proposed and DGPS signal was nominated as the possible substitute. The DGPS signal uses medium frequency, which travels through the surface and cause the additional delay rather than the speed of light according to Conductivities and elevations of the irregular terrain. The similar approach is Locan-C. Loran-C has been widely used as the maritime location system. Loran-C uses the ASF estimation method and provides more precise positioning. However there was rarely research on this area in Korea Therefore, we introduce the legacy guaranteed model of additional delay(ASF) and present the results of implementation. With the comparison of the original Monteath results and BALOR results respectively, we guarantee that the implementation is absolutely perfect. For further works, we're going to apply the ASF estimation model to Korean DGPS system with the Korean terrain data.

Precision Improvement Technique of Propagation Delay Distance Measurement Using IEEE 1588 PTP (IEEE 1588 PTP를 이용한 전파 지연 거리 측정의 정밀도 향상 기법)

  • Gu, Young Mo;Boo, Jung-il;Ha, Jeong-wan;Kim, Bokki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.515-519
    • /
    • 2021
  • IEEE 1588 PTP is a precision time protocol in which two systems synchronize without the aid of GPS by exchanging packets including transmission/reception time information. In the time synchronization process, the propagation delay time can be calculated and the distance between the two systems can be measured using this. In this paper, we proposed a method to improve the distance measurement precision less than the modulation symbol period using the timing error information extracted from the preamble of the received packet. Computer simulations show that the distance measurement precision is proportional to the length of the preamble PN sequence and the signal-to-noise ratio.

Phase Error Accumulation Methodology for On-chip Cell Characterization (온 칩 셀 특성을 위한 위상 오차 축적 기법)

  • Kang, Chang-Soo;Im, In-Ho
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.6-11
    • /
    • 2011
  • This paper describes the design of new method of propagation delay measurement in micro and nanostructures during characterization of ASIC standard library cell. Providing more accuracy timing information about library cell (NOR, AND, XOR, etc.) to the design team we can improve a quality of timing analysis inside of ASIC design flow process. Also, this information could be very useful for semiconductor foundry team to make correction in technology process. By comparison of the propagation delay in the CMOS element and result of analog SPICE simulation, we can make assumptions about accuracy and quality of the transistor's parameters. Physical implementation of phase error accumulation method(PHEAM) can be easy integrated at the same chip as close as possible to the device under test(DUT). It was implemented as digital IP core for semiconductor manufacturing process($0.11{\mu}m$, GL130SB). Specialized method helps to observe the propagation time delay in one element of the standard-cell library with up-to picoseconds accuracy and less. Thus, the special useful solutions for VLSI schematic-to-parameters extraction (STPE), basic cell layout verification, design simulation and verification are announced.

Design of the Transceiver for a Wide-Range FMCW Radar Altimeter Based on an Optical Delay Line (광 지연선 기반의 넓은 고도 범위를 갖는 고정밀 FMCW 전파고도계 송수신기 설계)

  • Choi, Jae-Hyun;Jang, Jong-Hun;Roh, Jin-Eep
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1190-1196
    • /
    • 2014
  • This paper presents the design of a Frequency Modulated Continuous Wave(FMCW) radar altimeter with wide altitude range and low measurement errors. Wide altitude range is achieved by employing the optic delay in the transmitting path to reduce the dynamic range of measuring altitude. Transmitting power and receiver gain are also controlled to have the dynamic range of the received power be reduced. In addition, low measurement errors are obtained by improving the sweep linearity using the Direct Digital Synthesizer(DDS) and minimizing the phase noise employing the reference clock(Ref_CLK) as the offset frequency of the Phase Locked Loop(PLL).

Wireless TDD Time Synchronization Technique Considering the Propagation Delay Between Mobile Vehicles (이동체간 전파지연을 고려한 무선 TDD 시각 동기화 기법)

  • Boo, Jung-il;Ha, Jeong-wan;Kim, Kang-san;Kim, Bokki
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.392-399
    • /
    • 2019
  • In this paper, we have studied wireless time division duplex(TDD) time synchronization technique considering the propagation delay between mobile vehicles. The existing IEEE 1588 precision time protocol(IEEE 1588 PTP) algorithm was applied and the time synchronization between the two nodes was achieved through the propagation delay and clock offset time correction calculated between master slave nodes during wireless TDD communication. The time synchronization process and procedure of IEEE 1588 PTP algorithm were optimized, thereby reducing the propagation delay error sensitivity for real-time moving vehicles. The sync flag signal generated through the time correction has a time synchronization accuracy of max +252.5 ns within 1-symbol(1.74 M symbol/sec, ${\pm}287.35ns$) through test and measurement, and it was confirmed that the time synchronization between master slave nodes can be achieved through sync flag signal generated during GPS disturbance.

The VoIP Capacity Analysis of 802.11 WLANS with Propagation Errors (전파 오류가 빈번한 802.11 무선 랜에서의 VoIP 용량 분석)

  • Jung, Nak-Cheon;Ahn, Jong-Suk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.1
    • /
    • pp.101-105
    • /
    • 2008
  • This paper proposes an analytical model to calculate VoIP (Voice of IP) capacity over wireless LANs with frequent bit errors. Since the traditional analytical models for VoIP capacity have not included the effect of bit errors, simulations ould only evaluate VoIP capacity over erroneous channels. For analytically accurate estimation of VoIP capacity over noisy channels, we extend the conventional model to include the effect of propagation errors, end-to-end delay, voice quality, the waiting time in AP(Access Point). The experiments show that our model predicts the VoIP capacity of a given network within the range from 3% to 9% difference comparing with the simulation results.