• Title/Summary/Keyword: 전천 카메라

Search Result 16, Processing Time 0.032 seconds

ALL-SKY OBSERVATION OF THE 2001 LEONID METEOR STORM: 1. METEOR MAGNITUDE DISTRIBUTION (전천 카메라를 이용한 2001 사자자리 유성우 관측: 1. 유성 등급 분포)

  • 김정한;정종균;김용하;원영인;천무영;임홍서
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.283-298
    • /
    • 2003
  • The 2001 Leonid meteor storm has been observed all over the world, and its most intense flux since the last few decades has caused great interest among both laymen and experts. Especially, its maximum hours occurred at dawn hours of Nov. 19 in the east Asia, during which moonless clear night at the Mt. Bohyun allowed us near perfect condition of observation. Observation was carried out in the period of 01:00∼05:40(KST), which include the predicted maximum hours, with all-sky camera installed for upper atmospheric airglow research. Tn this paper we analyze 68 all-sky images obtained in this period, which contain records of 172 meteors. Utilizing the zenith hourly rate(ZHR) of 3000 and magnitude distribution index of 2, which were reported to International Meteor Organization by visible observers in the east Asia, we estimate the limiting magnitude of about 3 for meteors detected in our all-sky images. We then derive magnitudes of 83 meteors with clear pixel brightness outlines among the initially detected 172 meteors by comparing with neighbor standard stars. Angular velocities of meteors needed for computing their passing times over an all-sky image are expressed with a simple formula of an angle between a meteor head and the Leonid radiant point. The derived magnitudes of 83 meteors are in the range of -6∼-1 magnitude, and its distribution shows a maximum new -3mag. The derived magnitudes are much smaller than the limiting magnitude inferred from the comparison with the result of naked-eye observations. The difference may be due to the characteristic difference between nearly instantaneuous naked-eye observations and CCD observations with a long exposure. We redetermine magnitudes of the meteors by adjusting a meteor lasting time to be consistent with the naked-eye observations. The relative distribution of the redetermined magnitudes, which has a maximum at 0 mag., resembles that of the magnitudes determined with the in-principle method. The relative distribution is quite different from ones that decrease monotonically with decreasing magnitudes for meteors(1∼6) sensitive to naked-eye observations. We conclude from the magnitude distribution of our all-sky observation that meteors brighter than about 0 mag., appeared more frequently during the 2001 Leonid maximum hours. The frequent appearance of bright meteors has significantly important implication for meteor research. We noted, however, considerably large uncertainties in magnitudes determined only by comparing standard stars due to the unknown lasting time of meteors and the non-linear sensitivity of all-sky camera.

ESTIMATION OF INTRINSIC WAVE PARAMETERS AND MOMENTUM FLUXES OF MESOSPHERIC GRAVITY WAVES OVER KOREA PENINSULA USING ALL-SKY CAMERA AND FABRY-PEROT INTERFEROMETER (전천 카메라와 페브리-페로 간섭계 자료를 이용한 한반도 상공 중간권 중량파의 고유파동계수 및 운동량 플럭스 산출)

  • Chung, Jong-Kyun;Kim, Yong-Ha;Won, Young-In;Jee, Gun-Hwa
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.327-338
    • /
    • 2007
  • We estimate the momentum fluxes of short-period gravity waves which are observed in the OI 557.7 nm nightglow emission with all-sky camera at Mt. Bohyun ($36.2^{\circ}\;N,\;128.9^{\circ}\;E$) in Korea. The intrinsic phase speed ($C_{int}$), the intrinsic period (${\tau}_{int}$), and vertical wavelength (${\lambda}_z$) are also deduced from the horizontal wavelength (${\lambda}_h$), observed period (${\tau}_{ob}$), propagation direction (${\phi}_{ob}$), observe phase speed (${\upsilon}_{ob}$) of the gravity wave on the all-sky images. The neutral winds to deduce intrinsic wave parameters are measured with Fabry-Perot interferometer on Shigaraki ($34.8^{\circ}\;N,\;13.1^{\circ}\;E$) in Japan. We selected 5-nights of observations during the period between July 2002 and December 2006 considering of the weather and instrument conditions in two observation sites. The mean values of intrinsic parameter of gravity waves are $({\tau}_{int})\;=\;12.9\;{\pm}\;6.1\;m/s,\;({\lambda}_z)\;=\;12.9\;{\pm}\;6.5,\;and\;(C_{int})\;=\;40.6\;{\pm}\;11.6\;min$. The mean value of calculated momentum fluxes for four nights besides of ${\lambda}_z\;<\;6\;km$ is $12.0\;{\pm}\;15.2\;m^2/s^2$. It is needed the long-term coherent observation to obtain typical values of momentum fluxes of the mesospheric gravity waves using all-sky camera and the neutral wind measurements.

Effect of All Sky Image Correction on Observations in Automatic Cloud Observation (자동 운량 관측에서 전천 영상 보정이 관측치에 미치는 효과)

  • Yun, Han-Kyung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.103-108
    • /
    • 2022
  • Various studies have been conducted on cloud observation using all-sky images acquired with a wide-angle camera system since the early 21st century, but it is judged that an automatic observation system that can completely replace the eye observation has not been obtained. In this study, to verify the quantification of cloud observation, which is the final step of the algorithm proposed to automate the observation, the cloud distribution of the all-sky image and the corrected image were compared and analyzed. The reason is that clouds are formed at a certain height depending on the type, but like the retina image, the center of the lens is enlarged and the edges are reduced, but the effect of human learning ability and spatial awareness on cloud observation is unknown. As a result of this study, the average cloud observation error of the all-sky image and the corrected image was 1.23%. Therefore, when compared with the eye observation in the decile, the error due to correction is 1.23% of the observed amount, which is very less than the allowable error of the eye observation, and it does not include human error, so it is possible to collect accurately quantified data. Since the change in cloudiness due to the correction is insignificant, it was confirmed that accurate observations can be obtained even by omitting the unnecessary correction step and observing the cloudiness in the pre-correction image.

Development of the Cloud Monitoring Program using Machine Learning-based Python Module from the MAAO All-sky Camera Images (기계학습 기반의 파이썬 모듈을 이용한 밀양아리랑우주천문대 전천 영상의 운량 모니터링 프로그램 개발)

  • Gu Lim;Dohyeong Kim;Donghyun Kim;Keun-Hong Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.2
    • /
    • pp.111-120
    • /
    • 2024
  • Cloud coverage is a key factor in determining whether to proceed with observations. In the past, human judgment played an important role in weather evaluation for observations. However, the development of remote and robotic observation has diminished the role of human judgment. Moreover, it is not easy to evaluate weather conditions automatically because of the diverse cloud shapes and their rapid movement. In this paper, we present the development of a cloud monitoring program by applying a machine learning-based Python module "cloudynight" on all-sky camera images obtained at Miryang Arirang Astronomical Observatory (MAAO). The machine learning model was built by training 39,996 subregions divided from 1,212 images with altitude/azimuth angles and extracting 16 feature spaces. For our training model, the F1-score from the validation samples was 0.97, indicating good performance in identifying clouds in the all-sky image. As a result, this program calculates "Cloudiness" as the ratio of the number of total subregions to the number of subregions predicted to be covered by clouds. In the robotic observation, we set a policy that allows the telescope system to halt the observation when the "Cloudiness" exceeds 0.6 during the last 30 minutes. Following this policy, we found that there were no improper halts in the telescope system due to incorrect program decisions. We expect that robotic observation with the 0.7 m telescope at MAAO can be successfully operated using the cloud monitoring program.

Deriving Physical Quantity for Measurement of Atmospheric Polarization and Its Correlation with Air Pollutants (대기 편광 측정을 위한 물리량 도출 및 대기 오염 물질과의 상관관계)

  • Park, Hyogun;Yoon, Hyeongsu;Kim, Eunji;Kang, Dongil
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.249-256
    • /
    • 2013
  • For the purpose of recording polarization of the earth's atmosphere, the entire sky was photographed using the all-sky camera when the Sun was just above the horizon. The ratio and width of polarization were defined using the photograph, and a method to measure them was developed. Time-series photography of the polarization ratio and its width enabled us to qualitatively analyze the polarization phenomena which changes depending on the weather conditions. Findings indicated that polarization was co-related with air pollutants in a meaningful way. The polarization phenomena of the Earth's atmosphere are influenced by air pollutants. The more air pollutants exist in the air, the lower polarization ratio and the bigger polarization width it has. It is suggested that air pollutants disperses more photons, which makes it possible to observe the polarization phenomena in the vast area of the sky.

A Study of the Seocheon Fireball Explosion on September 23, 2020 (2020년 9월 23일 서천 화구 폭발 관측 연구)

  • Che, Il-Young;Kim, Inho
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.688-699
    • /
    • 2021
  • On September 23, 2020, at 1:39 a.m., a bright fireball above Seocheon was observed across the country. Two fireball explosions were identified in the images of the All-Sky Camera (ASC), and the shock waves were recorded at seismic and infrasound stations in the southwestern Korean Peninsula. The location of the explosion was estimated by a Bayesian-based location method using the arrival times of the fireball-associated seismic and infrasound signals at 17 stations. Realistic azimuth- and rang-dependent propagation speeds of sound waves were incorporated into the location method to increase the reliability of the results. The location of the sound source was found to be 36.050°N, 126.855°E at an altitude of 35 km, which was close to the location of the second fireball explosion. The two explosions were identified as sequential infrasound arrivals at local infrasound stations. Simulations of waveforms for long ranges explain the detection results at distant infrasound stations, up to ~266 km from the sound source. The dominant period of the signals recorded at five infrasound stations is about 0.4 s. A period-energy relation suggests the explosion energy was equivalent to ~0.3 ton of TNT.