• Title/Summary/Keyword: 전자파산란

Search Result 298, Processing Time 0.024 seconds

A Study on New Broadband Phase Shifter using λ/8 Parallel Stubs (λ/8 병렬 스터브들을 이용한 새로운 광대역 위상 천이기에 대한 연구)

  • 엄순영;정영배;전순익;육종관;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.657-666
    • /
    • 2002
  • In this paper, a new broadband phase shifter to adjust the slope of dispersive phase characteristic for frequency of transmission network was proposed. The new fundamental network consists of a fixed main line with a length of λ/2 at the center frequency and two double stubs, each with a length of λ/8 at the center frequency, which are open and shorted, respectively, and which are shunted at the edge points of the main line. Characteristic impedances of the main line and two parallel double stubs are adjusted to produce a minimum phase error and to obtain an input and output match at the desired phase shift. Especially, the proposed structure is especially suitable for a broadband phase shifter with large phase shifts more than 90$^{\circ}$, and it is operated in the octave bandwidth. To verify the usefulness of a new broadband phase shifter, each 45$^{\circ}$-, 90$^{\circ}$-, 180$^{\circ}$-bit phase shifter and 3-bit phase shifter(45$^{\circ}$-phase step), which is cascaded in series, operated at the center frequency 3 GHz were designed, fabricated and experimented. The measured results were in very close agreement with the corresponding simulation results over the bandwidth of I/O impedance match and phase error for each phase shift.

Analysis of Target Identification Performances against the Moving Targets Using a Bistatic Radar (바이스태틱 레이다를 이용한 이동표적에 대한 표적식별 성능 분석)

  • Lee, Seung-Jae;Bae, Ji-Hoon;Jeong, Seong-Jae;Yang, Eunjung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.198-207
    • /
    • 2016
  • Bistatric radar can perform detection and identification for stealth targets that are rarely detected by the conventional monostatic radar. However, high resolution range profile(HRRP) generated from the received signal in the bistatic radar cannot show exact range information of the target because the bistatic geometry lead to the distortions of the bistatic HRRP. In addition, electromagnetic scattering mechanisms of the target are varied depending on the bistatic geometry. Thus, efficient database construction is a crucial factor to achieve successful classification capability in bistatic target identification. In this paper, a database construction method based on realistic flight scenarios of a target, which provides a reliable identification performance for the monostatic radar, is applied to bistatic target identification. Then, the capability and efficiency of the method is analyzed. Simulation results show that reliable identification performance can be achieved using the database construction based on the flight scenarios when the target is a considerable distance away from the bistatic radar.

Impact of Group Delay in RF BPF on Impulse Radio Systems (임펄스 라디오 시스템에서 RF 대역 통과 필터의 군지연 영향 분석)

  • Myoung Seong-Sik;Kwon Bong-Su;Kim Young-Hwan;Yook Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.4 s.95
    • /
    • pp.380-388
    • /
    • 2005
  • This paper presents analysis results of the effects of RF filter characteristics on the system performance of impulse radio. The impulse radio system transmits modulated pulses having very short time duration and information can be extracted in receiver side based on cross-correlation between received and transmitted pulses. Accordingly, the pulse distortion due to in-band group delay variation can cause serious system performance degradation. In general, RF bandpass filters inevitably cause group delay difference to the signal passing through the filter which is proportional to its skirt characteristic due to its resonance phenomenon. For time as well as frequency domain analysis, small signal scattering parameter $S_{21}$ and its Fourier transform are used to characterize output pulse waveform under the condition that the input and output ports are matched. The output pulse waveform of the filter is predicted based on convolution integral between input pulse and filter transfer function, and resulting BER performances in the BPM and PPM based impulse radio system are calculated.

Superposition Method for the Analysis of Electrically Large Problem Including Many Vehicles (다수의 차량이 존재하는 도로상의 전자파 해석을 위한 중첩분석법)

  • Park, Chan-Sun;Jeong, Yi-Ru;Jung, Kibum;Shin, Jaekon;Yook, Jong-Gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.10
    • /
    • pp.974-983
    • /
    • 2014
  • The commercialization of ITS(Intelligent Transport System) is in sight including V2V(Vehicle-toVehicle) communication and analysis of related electromagnetic circumstances is essential process in relevant legislation. However analysis including numbers of vehicles have electrically large environment which leads to a lack of computational resources. In this letter, we suggest superposition method which require much less computational resources by subgrouping environment and using post-processing of results. Suggested method approximate original result by superpositioning of analysis which include scatterers near source, observation point. This letter also presented guideline of method and example for comparison with full analysis result.

A Study on the Estimation of Wind Velocity in Asymmetric Doppler Spectra of Weather Signals (비대칭 도플러 스펙트럼 기상신호에서의 풍속 추정에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1753-1759
    • /
    • 2009
  • A weather radar as one of the remote sensing devices to analyze the weather phenomena receives the return echoes which consist of scattered electromagnetic wave signals from rain, cloud and dust particles, etc. These received Doppler weather spectra are analyzed to extract the various characteristic weather information. The mean wind velocity is one of the important weather parameters which can be obtained by a weather radar ed it may be useful in the prevention of weather hazards occurred by the abrupt shift of wind in small geographical scales such as microbursts. It is usually estimated by pulse pair method which is considered to be reliable and very efficient in the computational requirement. However, there are some problems in the accurate estimation of the mean velocity if Doppler spectra of weather signals appear to be asymmetric gaussian or multi-peak spectra. Therefore, in this paper, the problems in the mean estimation of asymmetric Doppler spectra are analyzed and the improved method is suggested.

FSS Design System Using Genetic Algorithm and Characteristic Data Base (유전알고리즘과 특성 DB를 이용한 FSS 설계 시스템)

  • Lee Ji-Hong;Lee Fill-Youb;Seo Il-Song;Kim Geun-Hong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.4 s.346
    • /
    • pp.58-66
    • /
    • 2006
  • This paper proposes an FSS(Frequency Selective Surface) design system that automatically derives design parameters minimally specified by engineers. The proposed system derives optimal design parameters through theory of electromagnetic scattering on FSS, database implemented from real data obtained from practically manufactured FSS, and GA(Genetic Algorithm) for optimizing design parameters. The system, at the first step, searches the best matching FSS within preconstructed DB with given characteristics specified by operators, and then sets initial genes from the searched FSS parameters. GA iterates the optimization process until the system finds the FSS design parameters that matches the characteristics specified by operators. The theory for the electromagnetic scattering on FSS is verified by comparing the simulation results with real data obtained by measuring system composed of horn antenna and receiver. The process for manufacturing the FSS is also included in the paper.

A Study on Simulation of Asymmetric Doppler Signals in a Weather Radar (기상 레이다에서의 비대칭 도플러 신호 모의구현에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1737-1743
    • /
    • 2008
  • A weather radar extracts the weather information from the return echoes which consist of scattered electromagnetic wave signals from rain, cloud and dust particles, etc. The characteristics of Doppler weather signal and ground clutter should be analyzed to extract the accurate weather information. However, the conventional symmetric weather Doppler model is somewhat inappropriate in representing various weather situations. Therefore, the improved model is suggested to describe the skewness in the Doppler spectrum model. Using the suggested model, many various weather signals can be simulated efficiently in time and spectral domain according to weather situations, operation environment and system characteristics. This simulation method may be very helpful in verifying the accuracy of the weather information extraction algorithms and developing the new system for further performance improvement.

Acceleration of the Multi-Level Fast Multipole Algorithm using Double Interpolation Technique (이중 보간 기법을 이용한 MLFMA 가속기법)

  • Yun, Dal-Jae;Kim, Hyung-Ju;Lee, Jae-In;Yang, Seong-Jun;Yang, Woo-Yong;Bae, Jun-Woo;Myung, Noh-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.311-319
    • /
    • 2019
  • This paper proposes an acceleration of the multi-level fast multipole algorithm(MLFMA) by using a double interpolation method. The MLFMA has been primarily used to conduct scattering analysis of electrically large targets, e.g. stealth aircraft. In the MLFMA, radiation functions of each basis functions are first precomputed, and then aggregated. After transfer calculations for the aggregations, each interaction is disaggregated, and then received in the testing function. The key idea of the proposed method is to decrease the sampling rates of the radiation and receiving functions. The computational complexity of the unit sphere integration in terms of the testing functions is thus highly alleviated. The remaining insufficient sampling rate is then complemented by using additional interpolation. We demonstrate the performance of the proposed method through radar cross-section(RCS) calculations for realistic aircraft.