• Title/Summary/Keyword: 전자선 치료

Search Result 228, Processing Time 0.024 seconds

The Calculation of Energy Distributions for Clinical Electron Beams from Mono Energetic Depth dose Data (단일에너지 깊이선량률 자료에 의한 치료용 전자선의 에너지분포 계산)

  • 이정옥;정동혁
    • Progress in Medical Physics
    • /
    • v.15 no.1
    • /
    • pp.39-44
    • /
    • 2004
  • The energy distributions for clinically used electron beams from measured and calculated mono energetic depth dose values were calculated. The energy distributions having the minimum difference between the measured and reduced values of depth dose are determined by iterations based on least square method. The nominal energies of 6, 9, 12, 15 MeV clinical electron beams were examined. The Monte Carlo depth dose calculations with determined energy distributions were peformed to evaluate those distributions. In a comparison of the calculated and measured depth dose data, the standard errors are estimated within $\pm$ 3% from surface to R$_{80}$ depth and within $\pm$4% from the surface to near the range for all electron beams. This can be practically applied to determine the energy distributions for clinically used electron beams.

  • PDF

Evaluating Surface dose of Treatment Immobilization Devices according to their Electron Energy (전자선에너지에 따른 치료보조기구의 표면선량 평가)

  • Park, Chul-Woo;Im, In-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.360-363
    • /
    • 2010
  • This study evaluated surface dose of treatment immobilization devices such as Themo-plastic, Vac-lock, Cotton and Plaster according to their electron energy. Using a linear accelerater, a plane parallel chamber was set up on 6Mev, 9Mev, 12Mev and 15Mev. A distance between a source and a surface was 100cm and a field size was 10cm*10cm. An incident angle was 0 degree and a radiation dose was 100MU. To decrease an error, the measurement repeated 3 times. The analysis reveals that the surface dose of Vac-lock was the highest and Themo-plastic, Plaster and Cotton were high in order.