• Title/Summary/Keyword: 전열용량

Search Result 20, Processing Time 0.02 seconds

The Maximum Power Condition of the Endo-reversible Cycles (내적가역 사이클의 최대출력 조건)

  • 정평석;김수연;김중엽;류제욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.172-181
    • /
    • 1993
  • Pseudo-Brayton cycle is defined as an ideal Brayton cycle admitting the difference between heat capacities of working fluid during heating and cooling processes. The endo-pseudo-Brayton cycle which is a pseudo-Brayton cycle with heat transfer processes is analyzed with the consideration of maximum power conditions and the results were compared with those of the endo-Carnot cycle and endo-Brayton cycle. As results, the maximum power is an extremum with respect to the cycle temperature and the flow heat capacities of heating and cooling processes. At the maximum power condition, the heat capacity of the cold side is smaller than that of heat sink flow. And the heat capacity of endo-Brayton cycle is always between those of heat source and sink flows and those of the working fluids of pseudo-Brayton cycle. There is another optimization problem to decide the distribution of heat transfer capacity to the hot and cold side heat exchangers. The ratios of the capacies of the endo-Brayton and the endo-pseudo-Braton cycles at the maximum power condition are just unity. With the same heat source and sink flows and with the same total heat transfer caqpacities, the maximum power output of the Carnot cycle is the least as expected, but the differences among them were small if the heat transfer capacity is not so large. The thermal efficiencies of the endo-Brayton and endo-Carnot cycle were proved to be 1-.root.(T$_{7}$/T$_{1}$) but it is not applicable to the pseudo-Brayton case, instead it depends on comparative sizes of heat capacities of the heat source and sink flow.w.

Empirical Analysis on the Cooling Load and Evaporation Efficiency of Fogging System in Greenhouses (온실의 냉방부하 및 포그시스템의 증발효율 실험분석)

  • Nam, Sang-Woon;Seo, Dong-Uk;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • In order to develop the cooling load estimation method in the greenhouse, the cooling load calculation formula based on the heat balance method was constructed and verified by the actual cooling load measured in the fog cooling greenhouse. To examine the ventilation heat transfer in the cooling load calculation formula, we measured ventilation rates in the experimental greenhouse which a cooling system was not operated. The ventilation heat transfer by a heat balance method showed a relatively good agreement. Evaporation efficiencies of the two-fluid fogging system were a range of 0.3 to 0.94, average 0.67, and it showed that they increased as the ventilation rate increased. We measured thermal environments in a fog cooling greenhouse, and calculated cooling load by heat balance equation. Also we calculated evaporative cooling energy by measuring the sprayed amount in the fogging system. And by comparing those two results, we could verify that the calculated and the measured cooling load showed a relatively similar trend. When the cooling load was low, the measured value was slightly larger than calculated, when the cooling load was high, it has been found to be smaller than calculated. In designing the greenhouse cooling system, the capacity of cooling equipment is determined by the maximum cooling load. We have to consider the safety factor when installed capacity is estimated, so a cooling load calculation method presented in this study could be applied to the greenhouse environmental design.

Preparation and Characterization of Hydrophilic Aminated poly(styrene-ethylene-butylene-styrene) Polymer Membrane (친수성 아민화된 poly(styrene-ethylene-butylene-styrene) 고분자 분리막 제조 및 투습도 특성평가)

  • Son, Tae Yang;Kim, Ji Hyun;Park, Chi Hoon;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.4
    • /
    • pp.336-343
    • /
    • 2017
  • These days, the quality of indoor air is a very important concept for modern people who have lived in building and is a matter of new thinking. The quality is determined by the temperature and humidity of indoor air. In addition, there is a disadvantage in that energy consumption is severe for indoor air improvement. Therefore, researches on methods to solve such problems using total heat exchange have been actively conducted. So, in this study, aminated poly(styrene-ethylene-butylene-styrene) polymers were synthesized by introducing a hydrophilic substituent, ammonium, into main chain and the properties of synthesized polymers were evaluated. The synthesis was carried out through chloromethylation and amination reactions to introduce ammonium into main chain. As a result, the water uptake and the ion exchange capacity of the synthesized polymers increased as the content of the reaction reagent solution increased. It was confirmed that the important data at the total heat exchange membrane, water vapor transmission rate also increased according to temperature, equivalent.

A Study on the Evaluation of Thermal Transmittance Performance of Aluminum Alloy Window Frame of Educational Facility considering 2 Dimensional Steady-state Heat Transfer (2차원 정상상태 전열해석을 통한 교육시설의 알루미늄 창호 열관류율 평가에 관한 연구)

  • Park, Tong-So
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5284-5289
    • /
    • 2011
  • This study focused to evaluate thermal transmittance(U-value) performance of sliding type of aluminum alloy window frame(AAWF) with double glazing(DG) and glazing spacer and that without thermal breaker in winter and summer season by two dimensional steady state heat transfer analysis. The AAWE was installed to an existing educational facilities in Seosan area which is the southern region of the Korean Peninsula. Analysis of 2D steady-state heat transfer was performed through the use of BISCO as calculation and simulation program. U-value and temperature factors were calculated. The results are as followed. First, the isotherm simulation shows that AAWF with double glazing have serious differences from recently proposed window thermal performance standards such as Insulation Performance of Windows and Doors of Building Energy Saving Design Standards and the results of calculation of thermal transmittance performance of AAWF and DG are U=9.631 W/$m^2K$, U=2.382 W/$m^2K$ respectively during winter and summer season. Second, the results of analysis of heat transfer analysis, calculated by simulation, shows that 225% of heat is lost comparing with thermal performance standards U=4.0 W/$m^2K$ of general double glazing among those standards on AAWF without thermal breaker.

A Performance Study on the Cold Power Generation System for LNG terminal using ASPEN PLUS (ASPEN PLUS를 이용한 LNG 인수기지용 냉열발전 시스템 성능 연구)

  • 김동수;박영무
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.11a
    • /
    • pp.57-63
    • /
    • 1993
  • 냉열발전기술은 일본에서 많이 연구되어 다수의 상업 플랜트가 가동되고 있다. 일본에서는 천연가스 공급압력의 이원화(40 kgf/$\textrm{cm}^2$, 10 kgf/$\textrm{cm}^2$)로 직접 팽창방식을 적용할 수 있어 냉열발전의 경제성이 유리한 반면 국내에서는 비교적 높은 압력(70kgf/$\textrm{cm}^2$)의 단일 압력 공급체계에 적합한 냉열발전 시스템을 모색하여야 한다. 특히 발전용량 규모가 비교적 적은 냉열발전 시스템의 경제성 측면의 불리한 점을 고려할 때 적용 가능한 해당 발전공정들에 대해 전산모사의 방법을 이용하여 다양한 설계조건에서 최적의 조건들을 검토하여야 한다. 따라서 본 연구에서는 LNG의 저온 Exergy를 이용한 Rankine Cycle, LNG의 압력 Exergy를 이용한 부분팽창 Cycle 및 이 두 싸이클의 혼합 공정인 Linde 공정에 대해 현재 인수기지에서 운영되고있는 각종 설비들의 설계 데이타를 기준으로 상용모사기인 ASPEN PLUS를 이용, 국내 천연가스 공급 체계에 의거 각 공정별 최대 및 최적의 전력 발생 조건들을 검토하였다. 공정별 출력 및 엑서지 효율을 비교한 결과 약 3 ~ 6 Mw의 전력을 생산할 수 있음을 알 수 있었으며 최대 엑서지 효율은 37 %를 얻을 수 있었다. 또한 부분직접팽창방식의 최적시스템을 제시하였고 동일한 전열면적인 경우 부분직접팽창과 랭킨 싸이클의 성능은 비슷한 것으로 확인되었다.

  • PDF

Comparison of Heating Characteristics of Electric Heating Element Heater and Oil Hot Air Heater in Single Span Greenhouses (전기발열체 난방기 및 유류온풍 난방기의 단동온실 난방 특성 비교)

  • Kwon, Jin Kyung;Kim, Seung Hee;Shin, Young An;Lee, Jae Han;Park, Kyeong Sub;Kang, Youn Koo
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.324-332
    • /
    • 2017
  • The comparative experiments were conducted for single span greenhouses where cucumbers were cultivated to analyze the effect of heating between a carbon fiber electric heating element heater and an oil hot air heater in terms of the inside climate, energy consumption and plant growth. In order to analyze the effect of heating capacity, 6, 9, and 16 kW of electric powers were supplied to the electric heating element for same setting temperature of 15?. As a result, as the heating capacity increased, the number of ON-OFF cycles of the electric heating element and the temperature inside the greenhouse increased proportionally. In the comparison of two heaters, it was shown that the temperature and relative humidity distributions of the electric heating element installed greenhouse was much uniform than those of the oil hot air heater installed greenhouse. The heating energy consumptions during the heating period of 79 days were 867L for the oil hot air heater and 8,959 kWh for the electric heating element heater, and the heating costs were 607 and 403 thousand won respectively. In the electric heating element installed greenhouse, the cucumber growth was slightly better and the yield was 4.3% higher than those of the oil hot air heater installed greenhouse, but there were no statically significant difference in the cucumber growth and yield between greenhouses.

Optimum Size Combination of Heat Exchangers in a Small Gifford-Mchon/ Joule-Thomson Refrigerator (소형 Gifford-McMahon/Joule-Thomson 냉동기에서 열교환기의 최적 조합)

  • 김영률;이상용;장호명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2196-2202
    • /
    • 1992
  • The optimum size combination of heat exchangers in a Joule-Thomson(J-T) circuit for small cryogenic systems has been sought analytically, when the circuit is combined with a two-stage Gifford-McMahon(GM) cooler. Full thermodynamic cycle analysis was carried out to predict the performance of the combined refrigeration system. Relevant convective heat transfer coefficients, the computerized properties of helium, and the refrigeration capacity curve of a typical GM cooler have been used in the analysis. The result showed that, by changing the configuration(heat exchanger area ratio) of the system, the performance of the commonly-used GM/J-T refrigerators could be optimized. For the maximum refrigeration performance, the optimum mass flow rate of the refrigerant and the relative size between the heat exchangers have been obtained, when the cooling load was 0.1W at 3.995K with the total heat exchanger area being given.

Program for Process and System Design of Continuous Sterilizer (연속살균 공정 및 장치 설계 프로그램 개발)

  • 김형욱;홍지향;고학균
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.02a
    • /
    • pp.395-400
    • /
    • 2002
  • 지역농가, 농협 단위로 그 지역에서 생산되는 특산물을 직접 살균 가공할 수 있는 연속살균공정과 장치를 설계할 수 있는 프로그램을 웹프로그래밍 언어의 일종인 JSP와 자바를 이용하여 개발하였다. 식품의 산성도 및 물리적 특성과 미생물의 내열특성 등 공정을 설계하는 데 필요한 전문적인 정보를 데이터베이스로 구축하여 사용자가 식품의 특성에 대해 자세하게 모르더라도 쉽게 식품의 살균공정을 설계할 수 있었다. 연속살균장치를 구성하고 있는 부분은 크게 열교환기와 가열유지관, 펌프이며, 이에 대한 설계를 장치 설계 프로그램에서 하였다. 열교환기, 가열유지관등의 설계는 장치의 생산량 및 가격등을 결정하는 주요 요소이며, 살균장치의 성능을 결정짓는 주요한 인자가 된다. 연속살균공정을 설계하는 데 필요한 인자는 식품의 pH특성, 식품의 종류이며, 입력된 값을 이용하여 데이터베이스 내에서 살균할 미생물의 종류와 미생물의 내열특성을 찾아 살균공정을 계산하게 된다. 프로그램을 통해 살균가능한 온도와 시간을 출력한다. 연속살균장치 설계 프로그램의 입력인자는 식품의 살균온도, 식품의 생산량, 열교환기에 사용할 열매체의 종류이며, 프로그램 내에서 열교환기의 전열계수, 식품을 살균온도가지 가열하는 데 걸리는 시간등이 계산되며, 결과값으로 열교환기의 특성 및 파이프의 구경과 길이, 펌프의 용량, 단열관의 구경과 길이가 출력된다. 살균 장치 중 열교환기의 설계에 사용되는 스테인레스 파이프를 국내에서 사용되는 규격별로 데이터베이스화하였으며, 파이프 제작업체 48개 업체, 펌프 제작업체 54개(국내 15개 업체, 미국 39개 업체), 열교환기 제작업체 13개업체(국내 13개 업체)에 대해서 데이터베이스를 구축하여 프로그램을 사용해 설계된 장치를 사용자가 쉽게 제작할 수 있도록 하였다. 공정설계프로그램을 통해 설계된 공정은 데이터베이스에 저장이 되며 장치설계프로그램에서 쉽게 이전에 설계했던 공정을 이용할 수 있도록 하여 공정 설계와 장치설계를 연계하도록 하였다.

  • PDF

A Study on the Fabrication of Heater based on Silicone Rubber (실리콘러버 기반의 히터제작에 관한 연구)

  • Jeong-Oh Hong;Jae Tack Hong;Shin-Hyeong Choi
    • Advanced Industrial SCIence
    • /
    • v.2 no.2
    • /
    • pp.9-15
    • /
    • 2023
  • Since silicone rubber heaters are flexible, they can be directly attached or installed in objects to be heated even in flat, curved or three-dimensional shapes. Since the current heating method heats the entire object to be heated and raises it to a required temperature, ignoring areas or positions where heat is not required, partial intensive heating cannot be performed. When using multi-heating zones, rather than heating the entire object to be heated, only the parts that need heat are intensively heated according to the process, so it is possible to heat quickly by local location by applying different amounts of heat with a small amount of electric capacity to each place that needs heat, and heat energy can reduce. In this study, the temperature and heating time of the partially concentrated region in the multi-heating region structure are measured so that a uniform temperature or temperature difference occurs in the region requiring thermal fusion. In order to determine the optimal power density range and reduce capacitance, the safety of a silicon rubber heater manufactured with a multi-heating zone structure is investigated. If the silicon rubber heater is manufactured in a multi-heating method, the multi-intensive heating technology can be ideally applied to all heating processes.

Prediction of Thermal Behavior of Automotive LNG Fuel Tank (LNG 자동차 연료 탱크의 열적 거동에 대한 예측)

  • NamKoong, Kyu-Won;Chu, Seok-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.875-883
    • /
    • 2010
  • The thermal performance of LNG fuel tanks of vehicles is determined by the time for non-venting storage of fuel and the amount of fuel supplied to the engine. In this study, we selected a double-walled vacuum-insulated fuel tank with a volume of 450 liter, and the properties of the fuel contained in it were assumed to be the same as those of the methane($CH_4$). For the increasing the non-venting fuel storage time, we propose the use of shielded penetration pipes in the tank. We compared the storage times of the tank used in our study with those of the conventional fuel tank. Further, the additional heat input required to maintain the fuel pressure necessary for an appropriate fuel supply rate was predicted. For these parameters, we derived a thermodynamic relationship that can be used to estimate the rate of increase in pressure for a known heat input, and we obtained equations for estimating the rate of heat leaked by using the established heat transfer model. From the results of numerical computation, we found the non-venting storage time of the tank with shielded pipes to be 25-30% higher than that of the tank with unshielded pipes. Further, we determined the appropriate operation conditions by taking into consideration the transfer rate of additional heat provided to the fuel tank.