• Title/Summary/Keyword: 전압리플

Search Result 304, Processing Time 0.031 seconds

A ZVS-CV Buck Converter using Thin-Film Inductor (박막 인덕터를 이용한 영전압 스위칭 Clamp Voltage Buck 컨버터에 관한 연구)

  • Kim, Young-Jae;Kim, Hee-Jun;Oh, Won-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.1
    • /
    • pp.56-63
    • /
    • 2000
  • Buck converter is considered to be one of the most widely used DC-DC converters due to its simple structure and high reliable performance. However, when it be combined with thin-film inductor, its own low inductance requires higher switching frequency in order to maintain optimum output ripple voltage and thus gives rise to extra switching losses. In view to overcoming such a technical inconvenience, soft switching fashion is suggested such as zero-voltage-switching of which an well known example is a Zero-Voltage-Switching clamp voltage(ZVS-CV) converter for which low inductance is imperatively required for ZVS operation. In order to support our suggestion, a 1W ZVS-CV buck converter is built by use of thin-film inductor, and then tested it. From the results of experiment and loss analysis, it is proved that the ZVS operation is well achieved and the measured efficiency of the converter is improved about 4% at full load comparing the conventional buck converter.

  • PDF

Performance Improvement of an Induction Motor in Low Speed Region

  • Kim, Seong-Hwan;Park, Tae-Sik;Kim, Nam-Jeung;Yoo, Ji-Yoon;Park, Gwi-Tae
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.64-72
    • /
    • 1997
  • Since the average speed calculated with encoder pulses inevitably has time delay, the control performance as well as the system stability is deteriorated. especially at the low speed region. Additionally, the distorted inverter output voltage due to the dead time effects and the forward voltage drops of the VSI (Voltage Source Inverter) causes torque ripples and their effects are more severe at the low speed operation of an induction motor. In this paper, an accurate speed estimation method using Kalman Filter Algorithm is presented to improve the performance of an induction motor speed control with a low precision encoder at low speed legion. The dead time effects and the forward voltage drops of the VSI are feedforwardly compensated to produce an exact inverter output voltage.

  • PDF

Reduction of Conducted Emission in Interleaved RPWM Buck Converter (인터리브드 RPWM Buck 컨버터의 전도성 노이즈 감소에 대한 연구)

  • Lee, Seunghyun;Lee, Keunbong;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.298-308
    • /
    • 2017
  • This paper presents a Interleaved Buck Converter(IBC) system with Random PWM to reduce electromagnetic noise by harmonics. Swithced mode power supply generally controlled by high switching frequency have a electromagnetic interference(EMI) issue due to the high-voltage/high-current switching to regulate the voltage in buck converter. To solve the problem. we present a novel IBC system with PRBS. IBC system has two active switches with 180 phase difference that controll the cicuit with two PWM signal. IBC system may be disadventageous for the cost due to the addtion of one set of switch, but it has adventages of power distribution, current ripple cancellation, fast transient response, and passive component size reduction. To verify the validity of study, simulation program has been bulit using PSIM and the experimental results of IBC system using RPWM was compared with the conventinal PWM and randomized PWM.

A Study on General Characteristics of Wind and Solar Power System, Automatic Tail Safety Controller and DC-DC Converter (풍력 및 태양광 발전시스템의 일반 특성과 강풍제어기 및 DC-DC컨버터에 대한 연구)

  • Choi, Jung-Hoon;Park, Sung-Jun;Moon, Chae-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.109-116
    • /
    • 2005
  • Wind power and photovoltaic(PV) systems are getting into the spotlight as substitute energy. But problem is happened stability by speed change of wind and the power output of the sun's ray. The power output amount according to velocity of wind power system. System breakdown can happen at change of sudden velocity, typhoon and night. This paper shows a automatic tail safety brake controller based on feedback control using wind velocity. The operation of automatic tail safety controller verified by manual test. PV system is a energy change system by temperature of sun's ray and cell. Maximum power point tracking(MPPT) is used in PV systems to maximize the photovoltaic array output power. In existed PV system is low output and changeable DC voltage for boost and filtering the buck-boost converter use. But, this paper established deformed DC-DC converter. Changed Buck-boost converter's unlined output current to line output current using DC-DC converter. This is effect that reduce ripple of output current. Proved through an output waveform comparison experiment. Finally, tail safety brake controller is established to wind turbine system for stability elevation and DC-DC converter is established on PV system for stability output.

A Study on the Development of 3[kW] Power Conversion System for Fuel Cell (3[kW]급 연료전지용 전력변환기 개발에 관한 연구)

  • Kim, Se-Min;Park, Sung-Jun;Song, Sung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.88-95
    • /
    • 2009
  • This paper is the research on the development of power conversion system for the fuel cell. In composing the DC/DC converters which have high boost voltage ratio, unlike the conventional method a new multi DC/DC converter system is proposed that the diode and the condenser and the reactor can be reduced by connecting the secondary side output of the transformer. In this system the rectifier part and the filter part of the secondary side in the power transformer that is connecting in series are composed into a single module, which is the strong advantage and the number of level can be easily increased. A new variable shift phase switching method is also suggested that it makes possible to reduce the output voltage ripples in the proposed system. All the factors mentioned above have been verified through simulations and experiments, and the proposed converter is considered very useful in the demanded load which requires a wide of the output.

A Study on the Two-switch Interleaved Active Clamp Forward Converter (투 스위치 인터리브 액티브 클램프 포워드 컨버터에 관한 연구)

  • Jung, Jae-Yeop;Bae, Jin-Yong;Kwon, Soon-Do;Lee, Dong-Hyun;Kim, Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.136-144
    • /
    • 2010
  • This paper presents the two-switch interleaved active clamp forward converter, which is mainly composed of two active clamp forward converters. Only two switches are required, and each one is the auxiliary switch for the other. So, the circuit complexity and cost are reduced and control is more simple. An additional resonant inductance is employed to achieve ZVS(Zero-Voltage-Switching) during the dead times. Interleaved output inductor currents diminish the voltage and current ripple. Accordingly, the smaller output filter and capacitors lower the converter volume. This research proposed the Two-switch interleaved Active Clamp Forward Converter characteristic. The principle of operation, feature and design considerations is illustrated and the validity of verified through the experiment with a 160[W] based experimental circuit.

Harmonics Control of Electric Propulsion System using Direct Torque Control (직접벡터제어방식을 사용하는 전기추진시스템의 고조파 제어)

  • Kim, Jong-Su;Oh, Sae-Gin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2618-2624
    • /
    • 2009
  • Harmonics (or distortion in wave form) has always existed in electrical power systems. It is harmless as long as its level is not substantial. However, with the recent rapid advancement of power electronics technology, so-called nonlinear loads, such as variable frequency drives for motor power/speed control, are increasingly finding their way to shipboard or offshore applications. In this paper a new approach to direct torque control (DTC) of induction motor drive is presented. In comparison with the conventional DTC methods the inverter switching frequency is constant and is dramatically increased, requiring neither any increase of the sampling frequency, nor any high frequency dither signal. The well-developed space vector modulation technique is applied to inverter control in the proposed DTC-based induction motor drive system, thereby dramatically reducing the current harmonics. As compared to the existing DTC approach with constant inverter switching frequency, the presented new approach does not invoke any concept of deadbeat control, thereby dramatically reducing the computations.

Development of simple and continuous microwave source using a microwave oven (전자오븐을 이용한 간편하고 연속적인 마이크로파 발생 장치 개발)

  • 권기청;김재현;김정희;이효석;전상진;허승회;최원호
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.290-295
    • /
    • 2000
  • In order to utilize as a pre-ionization means for reproducible ohmic plasma on KAIST-TOKAMAK, a simple, safe, economical and continuous microwave source has been developed using a home kitchen micro-wave oven. The magnetron used in the study can provide 500 W of power at 2.45 GHz. A conventional magnetron in a home kitchen microwave oven generates microwave for 8 ms at every 16 ms periodically due to the periodic (60 Hz) high voltage applied to the magnetron cathode. In order to generate continuous microwave which is suitable for tokamak pre-ionization, the magnetron operation circuit has been modified using a DC high voltage (5 kV, 1 A) power supply. It provides high-voltage with small ripple for magnetron cathode bias. Using the developed magnetron system, electron cyclotron resonace heated (ECH) plasmas were produced and the characteristics of the system were studied by diagnosing the ECH plasma using Langmuir probe and $H_{\alpha}$ emission diagnostics.

  • PDF

Sensorless Operation of Low-cost Inverters through Square-wave High Frequency Voltage Injection (사각 고주파 주입을 통한 저가형 인버터의 센서리스 운전)

  • Hwang, Sang-Jin;Lee, Dong-Myung
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.95-103
    • /
    • 2022
  • In this paper, the efficiency of a sensorless method with square-wave injection for a low-cost inverter, so called B4 inverter is presented. This inverter comprises only 4 switches to reduce system cost. It is distinguished from the conventional B6 inverter that has 6 of switching elements. The B4 inverter, injected a 1 kHz of harmonic wave, has been modelled using the functions and library in Matlab/Simulink. This paper described each component of sensorless algorithm. Among them, the Notch Filter is used to extract the harmonic component of the phase current and a second-order low-pass filter was used to reduce the ripple of the estimated speed. It is shown through simulation that the rotor angle of a permanent magnet synchronous motor is detected by multiplying the current waveform extracted using the notch filter by the harmonic voltage. The feasibility of the proposed method is shown through Simulink simulation.

A Low Area and High Efficiency SMPS with a PWM Generator Based on a Pseudo Relaxation-Oscillating Technique (Pseudo Relaxation-Oscillating 기법의 PWM 발생기를 이용한 저면적, 고효율 SMPS)

  • Lim, Ji-Hoon;Wee, Jae-Kyung;Song, Inchae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.70-77
    • /
    • 2013
  • We suggest a low area and high efficiency switched-mode power supply (SMPS) with a pulse width modulation (PWM) generator based on a pseudo relaxation-oscillating technique. In the proposed circuit, the PWM duty ratio is determined by the voltage slope control of an internal capacitor according to amount of charging current in a PWM generator. Compared to conventional SMPSs, the proposed control method consists of a simple structure without the filter circuits needed for an analog-controlled SMPS or the digital compensator used by a digitally-controlled SMPS. The proposed circuit is able to operate at switching frequency of 1MHz~10MHz, as this frequency can be controlled from the selection of one of the internal capacitors in a PWM generator. The maximum current of the core circuit is 2.7 mA, and the total current of the entire circuit including output buffer driver is 15 mA at 10 MHz switching frequency. The proposed SMPS has a simulated maximum ripple voltage of 7mV. In this paper, to verify the operation of the proposed circuit, we performed simulation using Dongbu Hitek BCD $0.35{\mu}m$ technology and measured the proposed circuit.