• Title/Summary/Keyword: 전선강도

Search Result 75, Processing Time 0.025 seconds

Mechanical Properties and Electrical Conductivities of In-Situ Cu-9Fe-1.2X(X=Ag, Cr, Co) Microcomposite Wires (Cu-9Fe-1.2X (X=Ag, Cr, Co)계 미세복합재료전선의 기계적 특성 및 전기전도도)

  • Song, Jae-Suk;Im, Mun-Su;An, Jang-Ho;Hong, Sun-Ik
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.41-48
    • /
    • 2000
  • In this study, microstructure and mechanical properties and electrical conductivities of in situ Cu-Fe-Xi(Xi=Ag, Cr or Co) alloy wires obtained by cold drawing combined with intermediate heat treatments have investigated. During cold working the primary and secondary dendrite arms are aligned along the drawing direction and elongated into filaments after deformation processing. The addition of Ag was found to be more effective in reducing the microstructural scale at the given draw ratio than that of Co or Cr throughout the drawing processing. The ultimate tensile strength and the conductivity of the Cu-Fe based composites containing Ag were higher than those of Cu-Fe composites containing Co or Cr. The good mechanical and electrical properties of Cu-Fe-Ag wires may be associated with the more uniform distribution of the finer filaments in the wires containing silver. The strength of Cu-Fe-Xi composites is dependent on the spacing of the Fe filaments in accord with a Hall-Petch relationship. The fracture surfaces of all the specimens showed ductile-type fracture and iron filaments occasionally observed on the fracture surfaces.

  • PDF

Properties of rin Resistance of High Performance Concrete with Varying Contents of Polypropylene Fiber and Specimen Size (폴리프로필렌 섬유의 혼입률 및 부재크기 변화에 따른 고성능 콘크리트의 내화 특성)

  • 한천구;양성환;이병열;황인성;전선천
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.449-456
    • /
    • 2002
  • Recently, the application of high strength and high performance concrete has been gradually increased as an important construction material for high rise and huge scaled construction. However, high performance concrete has undesirable characteristics of spalling subjected to high temperature due to its dense microstructure content. A spalling by fire brings surface failure and falling off concrete member. It is considered that spalling by fire should be taken into account for the safety of the concrete structure under fire. Therefore, in this paper, tests are carried out using high performance concrete containing polypropylene(PP) fiber in order to improve the fire resistance performance. PP fiber contents and member sizes are varied. According to experimental results, as for the influence of PP fiber contents, all the test specimens without PP fiber show entire failure in W/C of 35%, while they show nearly sound shape except some kinds of surface fracture in W/C of 55%. When PP fiber is contained more than 0.07%, favorable prevention effects of spatting by fire are obtained. As for the effects of test specimens size, it tends to increase the possibilities of spatting by fire as test specimens become larger. And spatting by fire at the edge of test specimens occurs more frequently than at the surface of test specimens. Residual compressive and tensile strength shows 45∼65 % of its original strength at W/C of 35%, and 30∼40% at W/C of 55 %.

A Review on Major Factors for Microalgae Biofuel Commercialization (미세조류 바이오연료 상용화를 위한 주요 인자 연구)

  • Kang, Do-Hyung;Heo, Soo-Jin;Oh, Chulhong;Ju, Se-Jong;Jeon, Seon-Mi;Choi, Hyun-Woo;Noh, Jae Hoon;Park, Se Hun;Kim, Tae-Young
    • Ocean and Polar Research
    • /
    • v.34 no.4
    • /
    • pp.365-384
    • /
    • 2012
  • Microalgae are photosynthetic microorganisms that are highly productive in the presence of basic renewable natural sources (light, $CO_2$, water and nutrients). They can synthesize lipids, carbohydrates and proteins in a small number of days. Subsequently, these carbon-captured products can be processed into both biofuels and valuable co-products. Additionally, microalgae would be an ideal feedstock for replacing land-based food crops with cellular products as high energy density transportation fuels. These microscopic organisms could contribute a significant amount of renewable energy on a global scale. In Korea, microalgae biofuel research was common in the early 1990s. The research activities were unfortunately stopped due to limited governmental funds and low petroleum prices. Interest in algal biofuels in Korea has been growing recently due to an increased concern over oil prices, energy security, greenhouse gas emissions, and the potential for other biofuel feedstock to compete for limited agricultural resources. The high productivity of microalgae suggests that much of the Korean transportation fuel requirements can be met by biofuels at a production cost competitive with the increasing cost of petroleum seen in early 2008. At this time, the development of microlalgal biomass production technology remains in its infancy. This study reviewed microalgae culture systems and biomass production, harvesting, oil extraction, conversion, and technoeconomical bottlenecks. Many technical and economic barriers to using microalgal biofuels need to be overcome before mass production of microalgal-derived fuel substitutes is possible. However, serious efforts to overcome these barriers could become a large-scale commercial reality. Overall, this study provides a brief overview of the past few decades of global microalgal research.

Distribution Characteristics of Fish Schools in the Yellow Sea and the East China Sea in the Spring of 1997 (1997 년 춘계의 동중국해 및 황해에 대한 어군의 분포특성)

  • Lee, Dae-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.3
    • /
    • pp.241-248
    • /
    • 2002
  • The combined hydroacoustic and demersal trawl surveys to investigate the distribution characteristics of fish schools in the Yellow Sea and the East China Sea were carried out during the spring of 1997 by the training ship "Nagasaki Maru" of Nagasaki University. Fish samples were collected by bottom trawling from 9 trawl stations randomly selected in the survey area, and the species and length compositions of trawl catches are examined. Hydroacoustic data were collected by using a Furuno FQ-50 scientific echo sounder operating at 50KHz and the data stored in field were later processed in the laboratory. The results obtained can be summarized as follows :1. In the 9 trawl surveys conducted in the Yellow Sea and the East China Sea, 78 species including 80 species of fishes, 4 species of Cephalopoda and 6 species of Crustacea, were identified. The most abundant species in these stations were swimming crab(Portunus trituberculatus), Japanese horse mackere(Trachurus japonicus), redlip croaker(Larimichthys polyactis) and the catch per one hour in each station ranged 7.7 to 182.5 kg/hour. 2. The mean volume backscattering strength for the entire water column and the bottom layer of the 0-10 m from bottom friction were -74.6 ㏈ and -68.2 ㏈, respectively. That is, the mean volume backscattering strength for the bottom layer was 6.4 ㏈ higher than that for the entire water column 3. In the surveys during the spring of 1997, the geographical distribution characteristics of fish schools suggests a trend of decreasing fish abundance toward the coast area of Korea and the highest demersal concentrations appeared in waters between the Cheju Island and the Tsushima Island 4. The distribution density of fish school in the East China Sea and Yellow Sea during the 1997 acoustic survey were estimated to be 6.65$\times$10$^{-5}$ kg/㎥ in the entire water column and 2.86$\times$l0$^{-4}$ kg/㎥ in the bottom layer, respectively.pectively.

Flood inflow forecasting on HantanRiver reservoir by using forecasted rainfall (LDAPS 예측 강우를 활용한 한탄강홍수조절댐 홍수 유입량 예측)

  • Yu, Myungsu;Lee, Youngmok;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.327-333
    • /
    • 2016
  • Due to climate changes accelerated by global warming, South Korea has experienced regional climate variations as well as increasing severities and frequencies of extreme weather. The precipitation in South Korea during the summer season in 2013 was concentrated mainly in the central region; the maximum number of rainy days were recorded in the central region while the southern region had the minimum number of rainy days. As a result, much attention has been paid to the importance of flood control due to damage caused by spatiotemporal intensive rainfalls. In this study, forecast rainfall data was used for rapid responses to prevent disasters during flood seasons. For this purpose, the applicability of numerical weather forecast data was analyzed using the ground observation rainfall and inflow rate. Correlation coefficient, maximum rainfall intensity percent error and total rainfall percent error were used for the quantitative comparison of ground observation rainfall data. In addition, correlation coefficient, Nash-Sutcliffe efficiency coefficient, and standardized RMSE were used for the quantitative comparison of inflow rate. As a result of the simulation, the correlation coefficient up to six hours was 0.7 or higher, indicating a high correlation. Furthermore, the Nash-Sutcliffe efficiency coefficient was positive until six hours, confirming the applicability of forecast rainfall.

Application of Spatial Autocorrelation for the Spatial Distribution Pattern Analysis of Marine Environment - Case of Gwangyang Bay - (해양환경 공간분포 패턴 분석을 위한 공간자기상관 적용 연구 - 광양만을 사례 지역으로 -)

  • Choi, Hyun-Woo;Kim, Kye-Hyun;Lee, Chul-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.4
    • /
    • pp.60-74
    • /
    • 2007
  • For quantitative analysis of spatio-temporal distribution pattern on marine environment, spatial autocorrelation statistics on the both global and local aspects was applied to the observed data obtained from Gwangyang Bay in South Sea of Korea. Global indexes such as Moran's I and General G were used for understanding environmental distribution pattern in the whole study area. LISAs (local indicators of spatial association) such as Moran's I ($I_i$) and $G_i{^*}$ were considered to find similarity between a target feature and its neighborhood features and to detect hot spot and/or cold spot. Additionally, the significance test on clustered patterns by Z-scores was carried out. Statistical results showed variations of spatial patterns quantitatively in the whole year. Then all of general water quality, nutrients, chlorophyll-a and phytoplankton had strong clustered pattern in summer. When global indexes showed strong clustered pattern, the front region with a negative $I_i$ which means a strong spatial variation was observed. Also, when global indexes showed random pattern, hot spot and/or cold spot were/was found in the small local region with a local index $G_i{^*}$. Therefore, global indexes were useful for observing the strength and time series variations of clustered patterns in the whole study area, and local indexes were useful for tracing the location of hot spot and/or cold spot. Quantification of both spatial distribution pattern and clustering characteristics may play an important role to understand marine environment in depth and to find the reasons for spatial pattern.

  • PDF

Measurements of Streambed Hydraulic Conductivity Using Drive-point Piezometers and Seepage Meters in the Upper Reaches of Anseong Stream (관입형 피조미터와 시피지미터를 이용한 안성천 상류구간 하상 수리전도도 측정)

  • Lee, Jeongwoo;Chun, Seon Geum;Yi, Myeong Jae;Kim, Nam Won;Chung, Il-Moon;Lee, Min Ho
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.413-420
    • /
    • 2015
  • Streambed hydraulic conductivity along the upper reaches of the Gongdo stage of Anseong Stream was estimated through measurements of stream-aquifer exchange rates (using a seepage meter) and vertical hydraulic gradients (using a manually driven piezometer). From the measured data, it was found out that the stream-aquifer exchange rates varied from -1.55 × 10-6 to 1.77 × 10-5 m/s, the corresponding vertical hydraulic gradient varied from -0.122 to 0.030, and the values of the streambed vertical hydraulic conductivity were estimated from 1.77 × 10-5 to 1.97 × 10-3 m/s, with variations representing local differences. The results are within the general range of streambed hydraulic conductivity values suggested by Calver (2001) and are slightly higher than values previously measured at other stream sites in Korea. The combined use of a drive-point piezometer and seepage meter (both constructed of high-strength stainless steel) is expected to be of practical use in the estimation of streambed hydraulic conductance, given the durability and portability of the instruments.

Ethnic Conflicts of the Have-nots: Emergent Hispanic Ethnicity (미국 빈민층 민족집단간의 갈등: 남미계 이민집단의 등장을 중심으로)

  • Kwon, Sang-Cheol
    • Journal of the Korean Geographical Society
    • /
    • v.31 no.4
    • /
    • pp.672-684
    • /
    • 1996
  • This paper explores the inter-ethnic conflicts between Blocks and Hispanics focusing on the emergent Hispanic ethnictity that reveals situational character in the US contexts. In the US census categories, major groups are indetified by race and ethnicity in which the Hispanic orgin is a category based on their common language while diverse in nationality. The census defined Hispanic category extends conveniently to acquiesce Affirmative Action and other government resource distribution. Internally, Hispanics have established numerous organizations to coalesce and assure their interests. The achieved dual language program and jurisdictional revision to represent language minority work as leverages to their cohesiveness. Under diminishing public resources and welfare payment, it is more difficult sharing burdens than benefits between minority groups. Block are not comfortable with the benefits Hispanics receive form the civil rights achievement without having had to struggle for it. The ethnic conflicts of the have-nots have become a new ethnic phenomenon attributable to the emergent Hispanic ethnicity.

  • PDF

The change of East Asian Monsoon to $CO_2$ increase

  • Kripalani, R.H.;Oh, J.H.;Chaudhari, H.S.
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.1 s.26
    • /
    • pp.9-27
    • /
    • 2006
  • The East Asian (China, Korea and Japan) summer monsoon precipitation and its variability are examined from the outputs of the 22 coupled climate models performing coordinated experiments leading to the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) following the multi-model ensemble (MME) technique. Results are based on averages of all the available models. The shape of the annual cycle with maximum during the summer monsoon period is simulated by the coupled climate models. However, models fail to simulate the minimum peak in July which is associated with northward shifts of the Meiyu-Changma-Baiu precipitation band. The MME precipitation pattern is able to capture the spatial distribution of rainfall associated with the location of the north Pacific subtropical high and the Meiyu-Changma-Baiu frontal zone. However precipitation over the east coast of China, Korea-Japan peninsular and the adjoining oceanic regions is underestimated. Future projections to the radiative forcing of doubled $CO_2$ scenario are examined. The MME reveals an increase in precipitation varying from 5 to 10 %, with an average of 7.8 % over the East Asian region at the time of $CO_2$ doubling. However the increases are statistically significant only over the Korea-Japan peninsula and the adjoining north China region. The increase in precipitation may be attributed to the projected intensification of the subtropical high, and thus the associated influx of moist air from the Pacific to inland. The projected changes in the amount of precipitation are directly proportional to the changes in the strength of the subtropical high. Further a possible increase in the length of the summer monsoon precipitation period from late spring through early autumn is suggested.

  • PDF

Impacts of Seasonal and Interannual Variabilities of Sea Surface Temperature on its Short-term Deep-learning Prediction Model Around the Southern Coast of Korea (한국 남부 해역 SST의 계절 및 경년 변동이 단기 딥러닝 모델의 SST 예측에 미치는 영향)

  • JU, HO-JEONG;CHAE, JEONG-YEOB;LEE, EUN-JOO;KIM, YOUNG-TAEG;PARK, JAE-HUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.2
    • /
    • pp.49-70
    • /
    • 2022
  • Sea Surface Temperature (SST), one of the ocean features, has a significant impact on climate, marine ecosystem and human activities. Therefore, SST prediction has been always an important issue. Recently, deep learning has drawn much attentions, since it can predict SST by training past SST patterns. Compared to the numerical simulations, deep learning model is highly efficient, since it can estimate nonlinear relationships between input data. With the recent development of Graphics Processing Unit (GPU) in computer, large amounts of data can be calculated repeatedly and rapidly. In this study, Short-term SST will be predicted through Convolutional Neural Network (CNN)-based U-Net that can handle spatiotemporal data concurrently and overcome the drawbacks of previously existing deep learning-based models. The SST prediction performance depends on the seasonal and interannual SST variabilities around the southern coast of Korea. The predicted SST has a wide range of variance during spring and summer, while it has small range of variance during fall and winter. A wide range of variance also has a significant correlation with the change of the Pacific Decadal Oscillation (PDO) index. These results are found to be affected by the intensity of the seasonal and PDO-related interannual SST fronts and their intensity variations along the southern Korean seas. This study implies that the SST prediction performance using the developed deep learning model can be significantly varied by seasonal and interannual variabilities in SST.