• Title/Summary/Keyword: 전산유체학

Search Result 519, Processing Time 0.029 seconds

Plume Behavior Study of Apollo Lunar Module Descent Engine Using Computational Fluid Dynamics (전산유체역학을 이용한 아폴로 달착륙선 하강엔진의 플룸 거동 연구)

  • Choi, Wook;Lee, Kyun Ho;Myong, Rho Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.766-774
    • /
    • 2017
  • When a plume flow exhausted from a lunar lander descent engine impinges on the lunar surface, regolith particles on the lunar surface will be dispersed due to a plume-surface interaction. If the dispersed particles collide with the lunar lander, some adverse effects such as a performance degradation can be caused. Thus, this study tried to predict the plume flow behaviors using the CFD methods. A nozzle inside region was analyzed by a continuum flow model based on the Navier-Stokes equations while the plume behaviors of the outside nozzle was performed by comparing and analyzing the individual results using the continuum flow model and the DSMC method. As a result, it was possible to establish an optimum procedure of the plume analysis for the lunar lander descent engine in the vacuum condition. In the future, it is expected to utilize the present results for the development of the Korean lunar lander.

A study on the acoustic loads prediction of flight vehicle using computational fluid dynamics-empirical hybrid method (하이브리드 방법을 이용한 비행 중 비행체 음향하중 예측에 관한 연구)

  • Park, Seoryong;Kim, Manshik;Kim, Hongil;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.163-173
    • /
    • 2018
  • This paper performed the prediction of the acoustic loads applied to the surface of the flight vehicle during flight. Acoustic loads during flight arise from the pressure fluctuations on the surface of body. The conventional method of predicting the acoustic loads in flight uses semi-empirical method derived from theoretical and experimental results. However, there is a limit in obtaining the flow characteristics and the boundary layer parameters of the flight vehicle which are used as the input values of the empirical equation through experiments. Therefore, in this paper, we use the hybrid method which combines the results of CFD (Computational Fluid Dynamics) with semi-empirical methods to predict the acoustic loads acting on flight vehicle during flight. For the flight vehicle with cone-cylinder-flare shape, acoustic loads were estimated for the subsonic, transonic, supersonic, and Max-q (Maximum dynamic pressure) condition flight. For the hybrid method, two kind of boundary layer edge estimation methods based on CFD results are compared and the acoustic loads prediction results were compared according to empirical equations presented by various researchers.

Prediction of Pitch and Roll Dynamic Derivatives for Flight Vehicle using CFD (전산유체역학을 이용한 비행체의 피치와 롤 동안정 미계수 예측)

  • Lee, Hyung-Ro;Gong, Hyo-Joon;Kim, Beom-Soo;Lee, Seung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.395-404
    • /
    • 2012
  • This paper presents computations of the dynamic derivatives of three dimensional flight vehicle configurations using CFD. The pitch dynamic derivatives are computed from the pitch sinusoidal motion, while the roll damping is computed based on steady state calculation using a non-inertial frame method. The Basic Finner and the SDM(Standard Dynamic Model) are chosen for the benchmark tests against other numerical and experimental results. For the flow calculations, a 3-D Euler solver that can be run both on the non-inertial frame and on the inertial frame is developed. A dual-time stepping method is applied for the unsteady time accurate simulations. A good agreement of pitch-roll dynamic derivatives with previously published numerical results and the experimental results is observed.

Verification of the Open Source Code, OpenFOAM to the External Flows (외부 유동 해석에 대한 오픈 소스 코드, OpenFOAM의 검증)

  • Kim, Tae-Woo;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.702-710
    • /
    • 2011
  • This paper aims to verify the applicability of OpenFOAM, the widely recognized open source CFD code, to external flows commonly found in aeronautical problems. To this end, several representative flow cases are selected first from subsonic to supersonic flow fields. Then, the computational results obtained from OpenFOAM are systematically compared against available data from experiments and other numerical codes. It was found that the strength and location of shock are well predicted and the effects of boundary conditions on the computed results are reviewed. Subsonic flow with massive separation is selected to validate the prediction capability of OpenFOAM. Based on the current results, the limitation and possibility of OpenFOAM was confirmed and for future study using OpenFOAM was suggested.

A Study on Hovering Performance of Ducted Fan System Through Ground Tests and CFD Simulations (지상 시험과 CFD 시뮬레이션을 통한 덕티드 팬 시스템의 제자리 비행 성능 연구)

  • Choi, Young Jae;Wie, Seong-Yong;Yoon, Byung Il;Kim, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.399-405
    • /
    • 2021
  • In the present study, ground tests and CFD simulations for a ducted fan system were performed to verify the hovering performance of the ducted fan system designed by KARI rotorcraft team. Six blades were composed for the ducted fan, and target rotating speed of the fan was decided to 4,000 RPM. Collective pitch angles were considered from 20 degrees to 36 degrees. The test data were obtained by increasing the rotating speed up to 4,000 RPM in 1,000 RPM increments. The CFD simulations were considered only 4,000 RPM of rotating speed. The hovering performance was represented by thrust, power, duct thrust ratio, and FM(Figure of Merit). Reliability of the performance results was ensured through the test and simulation results, and it was found that the target performance was achieved under conditions above 31 degrees of the pitch angle.

Prediction of Resistance Performance for Low-Speed Full Ship using Deep Neural Network (심층신경망을 이용한 저속비대선의 저항성능 추정)

  • TaeWon Park;JangHoon Seo;Dong-Woo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1274-1280
    • /
    • 2022
  • The resistance performance evaluation of general ships using computational fluid dynamics requires a lot of time and cost, and various methods are being studied to reduce the time and cost. Existing methods using main particulars or cross sections of ships have limitations in estimating resistance performance that is greatly dependent on the shape of the ship. In this paper, we propose a deep neural network model that can quickly predict the resistance performance of the hull surface by inputting the geometric information of the hullform mesh. The proposed deep neural network model based on Perceiver IO can immediately predict resistance performance, unlike computational fluid dynamics techniques that require calculation in each time step. It shows the result of estimating the resistance performance with an average error of less than 1% in the data set for a 50 K tanker ship, a type of low-speed full ship.

A study on the aeroacoustic characteristics of the sirocco fan of over the range (후드겸용 전자렌지 시로코홴의 소음특성에 관한 연구)

  • Jeon, Wan-Ho;Song, Sung-Bae;Sohn, Sang-Bum;Rew, Ho Seon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.123-128
    • /
    • 2002
  • Over the range(OTR) has been applied for cooking and ventilation functions especially in northern Amarica. Because flow rate and operating rpm of the double sided sirocco fan for ventilation are much higher and than the microwave oven system, the major noise source is the sirocco fm. Recently, the quiet fan development is one of very important issues for amenity. In this study, the noise source identification using multi-microphone array system was carefully carried out and numerical simulations for understanding the aerodynamic and aeroacoustic of the fan were peformed. The sound level of tonal noise is predicted with a good accuracy but that of the broadband shows some discrepancy. In order to reduce the broadband noise, the inlet region of sirocco fan have to be modified that the secondary flow should be suppressed. Based on these results, new low noise fan and OTR is now developing.

  • PDF

A Study on Aerodynamic and Noise Characteristics of a Sirocco Fan for Residential Ventilation (주거환기용 시로코홴의 공력 및 소음 특성 연구)

  • Kim, Jin-Hyuk;Song, Woo-Seog;Lee, Seung-Bae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.18-23
    • /
    • 2010
  • This paper presents a procedure for the aerodynamic and aeroacoustic characteristics of a sirocco fan. For the aerodynamic and aeroacoustic analyses of the sirocco fan, three-dimensional steady and unsteady Reynolds-averaged Navier-Stokes equations are solved with a shear stress transport turbulence model for turbulence closure. The flow analyses were performed on a hexahedral grid using a finite-volume solver. The validation of the numerical results is performed by comparing with experimental data for the pressure, efficiency and power. The internal flow analyses of the sirocco fan are performed to understand the unstable flow phenomenon on the casing for the wall pressure and internal flow characteristics at each position. It was found that fluctuation of pressure and locally concentrated noise source are observed near the cut-off and expansion regions of the casing.

Fluid-Structure Interaction Analysis of SEMAS for Boeing 787 (Boeing 787용 SEMAS의 유체-구조 연계해석에 관한 연구)

  • Noh, Kyung-Ho;Kim, Jin-Ho;Byun, Yung-Hwan;Lee, Sung-Taick;Lee, Jae-Woo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.3
    • /
    • pp.23-29
    • /
    • 2006
  • SEMAS(Smart Electro-Mechanical Actuation System), which enhances the flight performance and interior comforts of the airplane is selected as the prime actuation device for the Boeing 787 Environmental Control System. In the present study, fluid-structure interaction analysis process that simultaneously considers interaction by structural deformation and the fluid dynamics has been established. The integrated analysis shows there is slight structure-deformation which causes no severe interference among the structural components.

  • PDF

Numerical comparative study on high-fidelity prediction of aerodynamic noise from centrifugal fan system (원심팬 시스템의 공력소음 고신뢰 예측을 위한 수치 비교 연구)

  • Seo-Yoon, Ryu;Minseung, Jung;Younguk, Song;Cheolung, Cheong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.713-722
    • /
    • 2022
  • In this paper, the flow performance and aero-acoustic noise generated by the target centrifugal fan system were investigated numerically and experimentally. Also, the numerical method for Computational Aero-Acoustics were evaluated by comparing each method. To analyze the performance of the centrifugal fan experimentally, the acoustic power level was measured in the semi-anechoic chamber using microphones, and the active frequency range for the noise performance was identified and that frequency range was applied for Computational Aero-Acoustics (CAA) techniques as sampling frequency. Then, Navier-Stokes equation and the Ffowcs Williams&Hawking equations were used to analyze the flow and sound power numerically, respectively, and a virtual acoustic radiation plane was designed and used for the implementation of the sound field. The accuracy and numerical characteristics of the numerical methods were validated by comparing simulated acoustic power levels with acoustic power levels measured.