• 제목/요약/키워드: 전산유체학

검색결과 519건 처리시간 0.026초

Store Separation Analysis of Flow Angularity Wind Tunnel Test Technique using CFD (1) (CFD를 활용한 Flow Angularity 풍동시험기법의 외장분리 해석(1))

  • Son, Chang-Hyeon;Seo, Sung-Eun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제45권1호
    • /
    • pp.10-20
    • /
    • 2017
  • This study presents the feasibility of CFD(computational fluid dynamic) analysis using the flow angularity wind tunnel test technique. The CFD analyzed data by the flow angularity technique has been constructed as the database to get store trajectories by 6-DOF simulation. The database has been checked out store aerodynamic coefficients by the analyses at each position under wing. After that process, the simulated trajectories by database have been compared with the store trajectories by CTS(Captive Trajectory Simulation) of CFD. The trajectories provided by the database of flow angularity have a good agreement with the store trajectories by CFD.

전산유체역학과 유한요소법

  • 손정락
    • Journal of the KSME
    • /
    • 제29권4호
    • /
    • pp.403-413
    • /
    • 1989
  • 유한요소법의 전산유체 역학분야에 대한 응용현황을 계산방법과 적용례를 중심으로 정리하였다. 유한요소법의 가장 큰 장점은 복잡한 유동영역을 해석하기 위한 불규칙 요소망(unstructured mesh)의 사용이라 볼 수 있으며 적응적 요소망을 이용하여 계산의 정확도를 높일 수 있는 것 또한 강점이라 할 수 있다. 다만 불규칙 요소망 사용으로 인해 수반되는 대수 방정식 계산시간 및 기억용량의 증가는 conjugate gradient 방법 등을 이용하여 반드시 해결되어야만 한다. 지금 까지 유한요소법을 이용한 계산방법을 개발해 오는 과정을 보면 유한차분법에서 오래 전에 개 발된 방법들을 도입한 경우가 많았으며 특히 난류 및 개발된 경우가 많으며 대부분의 경우 이 들을 그대로 도입, 이용하였다. 반대로 최근에 항공기 동체설계 분야를 중심으로 복잡한 형태의 유동영역을 해석이 요구되는 경우 유한차분법, 특히 유한체적법(finite volume method)에 삼각형 유한요소를 이용한 불규칙 요소망을 도입하여 성공적으로 이용하고 있다. 따라서 전산유체 역 학의 발전을 위하여 두 분야의 유기적인 협조가 필요하며 결과적으로 전산유체 역학기법이 완 전히 기계설계의 한 분야로 정립될 수 있도록 많은 노력이 필요하다고 본다.

  • PDF

Application of Store Separation Wind Tunnel Test Technique into CFD (외장분리 풍동시험 기법의 전산유체해석 적용)

  • Son, Chang-Hyeon;Kim, Sang-Hun;Woo, Heekyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제49권4호
    • /
    • pp.263-272
    • /
    • 2021
  • In this study, aerodynamic coefficients obtained from Computational Fluid Dynamics (CFD) using wind tunnel test-like method is compared with coefficients obtained by actual wind tunnel test. Unsteady analysis has performed with using harmonic equation for motion of the external store. Aerodynamic database is generated based on CFD results to simulate 6 degree-of-freedom store separation analysis. Trajectory is obtained from simulation using both CFD-based and test-based database, and results are compared with trajectory from flight test result. It is concluded that generation of database based on CFD with wind tunnel test technique is valid from good agreement of the trajectory.

Fluid-Structure Interaction Analysis for Open Water Performance of 100 kW Horizontal Tidal Stream Turbine (유체-구조 연성을 고려한 100 kW급 수평축 조류발전 터빈의 단독성능 해석)

  • Park, Se Wan;Park, Sunho;Rhee, Shin Hyung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • 제17권1호
    • /
    • pp.20-26
    • /
    • 2014
  • It is essential to consider the effect of blade deformation in order to design a better tidal stream turbine being operated in off-design condition. Flow load causes deformation on the blade, and the deformation affects the turbine performance. In the present study, CFD analysis procedures were developed to predict open water performance of horizontal axis tidal stream turbine (HATST). The developed procedures were verified by comparing the results with existing experimental results. Fluid-structure interaction (FSI) analysis method, based on the verified CFD procedure, have been carried out to estimate the turbine performance for a turbine with flexible composite blades, and then the results were compared with those for rigid blades.

Static Aeroelastic Analysis for Aircraft Wings using CFD/CST Coupling Methodology (전산유체/전산구조 연계 방법을 사용한 항공기날개의 정적 공탄성 해석)

  • Choi, Dong-Soo;Jun, Sang-Ook;Kim, Byung-Kon;Park, Soo-Hyun;Lee, Dong-Ho;Lee, Kyung-Tae;Jun, Seung-Moon;Cho, Maeng-Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제35권4호
    • /
    • pp.287-294
    • /
    • 2007
  • A static aeroelastic analysis for supersonic aircraft wing equipped with external store under the wing lower surface is performed using computational fluid dynamics (CFD) and computational structural technology(CST) coupling methodology. Two mapping algorithms, which are the pressure mapping algorithm and the displacement mapping algorithm, are used for CFD/CST coupling. A three-dimensional unstructured Euler code and finite element analysis program are used to calculate the flow properties and the structural displacements, respectively. The coupling procedure is repeated in an iterative manner until a specified convergence criterion is satisfied. Static aeroelastic analysis for a typical supersonic flight wing is performed and final converged wing configuration is obtained after several iterations.

TRANSONIC AEROELASTIC ANALYSIS OF LEARJET AIRCRAFT WING MODEL (리어제트 항공기 날개의 천음속 공탄성해석)

  • Tran, T.T.;Kim, D.H.;Kim, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.453-457
    • /
    • 2011
  • In this study, transonic aeroelastic response analyses haw been conducted for the business jet aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

  • PDF

NONLINEAR FLUTTER ANALYSIS USING INVISCID REDUCED ORDER MODELING TECHNIQUE (비점성 저차모델링 기법을 활용한 비선형 플러터 해석)

  • Kim, Y.H.;Kim, D.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.458-464
    • /
    • 2011
  • A new method identifies coupled fluid-structure system with a reduced set of state variables is presented. Assuming that the structural model is known a priori either from an analysis or a test and using linear transformations between structural and aeroelastic states, it is possible to deduce aerodynamic information from sampled time histories of the aeroelastic system. More specifically given a finite set of structural modes the method extracts generalized aerodynamic force matrix corresponding to these mode shapes. Once the aerodynamic forces are known, an aeroelastic reduced-order model can be constructed in discrete-time, state-space format by coupling the structural model and the aerodynamic system. The resulting reduced-order model is suitable for constant Mach, varying density analysis.

  • PDF

The Objectives of EFD-CFD Comparison Workshop and Future Plan (EFD-CFD 비교워크샵 목적과 발전 방향)

  • Kim, Cheolwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제45권3호
    • /
    • pp.191-193
    • /
    • 2017
  • EFD-CFD Comparison Workshop was proposed based on the drag prediction workshop and high lift prediction workshop of AIAA. This workshop is organized to escalate the levels of wind tunnel test and computational fluid dynamics and to escalate the level of domestic aerodynamic technology through the collaboration of both areas. For three benchmark cases of which wind tunnel test results are available, comparison workshops have been held since 2015.

COMPUTATIONAL ANALYSIS ON DRONE NOISE OF AN AUTOMOBILE WITH OPENED REAR WINDOW (자동차 뒷 창문 개방에 의한 공명소음 전산해석 연구)

  • Bai, I.H.;Moon, Y.J.
    • Journal of computational fluids engineering
    • /
    • 제18권2호
    • /
    • pp.26-34
    • /
    • 2013
  • In modern days, automobiles are the most important means of transportation. With the development of automobiles, noises generated during operation has been recognized as a significant factor of performance to provide drivers with better driving environment along with other passengers. In this study, drone noise(pulsating noise), generated at the rear window when its opened, is predicted to understand the physics of its phenomenon at various velocities. The compressible Navier-stokes equation will be used with $6^{th}$ order compact finite difference scheme to analyze the characteristics.

Simulation of Solid Particle Sedimentation by Using Moving Particle Semi-implicit Method (고체 입자형 MPS법을 이용한 토사물 퇴적 시뮬레이션)

  • Kim, Kyung Sung;Yu, Sunjin;Ahn, Il-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • 제24권1호
    • /
    • pp.119-125
    • /
    • 2018
  • The particle based computational fluid dynamics (CFD) method, which follow Lagrangian approach for fluid dynamics, fluid particle behavior by tracking all particle calculation physical quantities of each particle. According to basic concept of particle based CFD method, it is difficult to satisfy continuum theory and measure influences from neighboring particle. Article number density and weight function were used to solve aforementioned issue. Difficulties continuum mean simulate non-continuum particles such as solid including granular and sand. In this regard, the particle based CFD method modified solid particle problems by replacing viscous and surface tension forces friction and drag forces. In this paper, particle interaction model for solid particle friction model implemented to simulate solid particle problems. The broken dam problem, which is common to verify particle based CFD method, used fluid or solid particles. The angle of repose was observed in the simulation results the solid particle not fluid particle.