As the aging phenomenon accelerates and various social problems related to the elderly of the vulnerable are raised, the need for effective elderly care solutions to protect the health and safety of the elderly generation is growing. Recently, more and more people are using Smart Toys equipped with ICT technology for care for elderly. In particular, log data collected through smart toys is highly valuable to be used as a quantitative and objective indicator in areas such as policy-making and service planning. However, research related to smart toys is limited, such as the development of smart toys and the validation of smart toy effectiveness. In other words, there is a dearth of research to derive insights based on log data collected through smart toys and to use them for decision making. This study will analyze log data collected from smart toy and derive effective insights to improve the quality of life for elderly users. Specifically, the user profiling-based analysis and elicitation of a change in quality of life mechanism based on behavior were performed. First, in the user profiling analysis, two important dimensions of classifying the type of elderly group from five factors of elderly user's living management were derived: 'Routine Activities' and 'Work-out Activities'. Based on the dimensions derived, a hierarchical cluster analysis and K-Means clustering were performed to classify the entire elderly user into three groups. Through a profiling analysis, the demographic characteristics of each group of elderlies and the behavior of using smart toy were identified. Second, stepwise regression was performed in eliciting the mechanism of change in quality of life. The effects of interaction, content usage, and indoor activity have been identified on the improvement of depression and lifestyle for the elderly. In addition, it identified the role of user performance evaluation and satisfaction with smart toy as a parameter that mediated the relationship between usage behavior and quality of life change. Specific mechanisms are as follows. First, the interaction between smart toy and elderly was found to have an effect of improving the depression by mediating attitudes to smart toy. The 'Satisfaction toward Smart Toy,' a variable that affects the improvement of the elderly's depression, changes how users evaluate smart toy performance. At this time, it has been identified that it is the interaction with smart toy that has a positive effect on smart toy These results can be interpreted as an elderly with a desire to meet emotional stability interact actively with smart toy, and a positive assessment of smart toy, greatly appreciating the effectiveness of smart toy. Second, the content usage has been confirmed to have a direct effect on improving lifestyle without going through other variables. Elderly who use a lot of the content provided by smart toy have improved their lifestyle. However, this effect has occurred regardless of the attitude the user has toward smart toy. Third, log data show that a high degree of indoor activity improves both the lifestyle and depression of the elderly. The more indoor activity, the better the lifestyle of the elderly, and these effects occur regardless of the user's attitude toward smart toy. In addition, elderly with a high degree of indoor activity are satisfied with smart toys, which cause improvement in the elderly's depression. However, it can be interpreted that elderly who prefer outdoor activities than indoor activities, or those who are less active due to health problems, are hard to satisfied with smart toys, and are not able to get the effects of improving depression. In summary, based on the activities of the elderly, three groups of elderly were identified and the important characteristics of each type were identified. In addition, this study sought to identify the mechanism by which the behavior of the elderly on smart toy affects the lives of the actual elderly, and to derive user needs and insights.