• Title/Summary/Keyword: 전문모델

검색결과 1,127건 처리시간 0.038초

전문용어 탐지와 해석 모델: 한국어 의학용어 중심으로 (Detecting and Interpreting Terms: Focusing Korean Medical Terms)

  • 염하람;김재훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.407-411
    • /
    • 2022
  • 최근 COVID-19로 인해 대중의 의학 분야 관심이 증가하고 있다. 대부분의 의학문서는 전문용어인 의학용어로 구성되어 있어 대중이 이를 보고 이해하기에 어려움이 있다. 의학용어를 쉬운 뜻으로 풀이하는 모델을 이용한다면 대중이 의학 문서를 쉽게 이해할 수 있을 것이다. 이런 문제를 완화하기 위해서 본 논문에서는 Transformer 기반 번역 모델을 이용한 의학용어 탐지 및 해석 모델을 제안한다. 번역 모델에 적용하기 위해 병렬말뭉치가 필요하다. 본 논문에서는 다음과 같은 방법으로 병렬말뭉치를 구축한다: 1) 의학용어 사전을 구축한다. 2) 의학 드라마의 자막으로부터 의학용어를 찾아서 그 뜻풀이로 대체한다. 3) 원자막과 뜻풀이가 포함된 자막을 나란히 배열한다. 구축된 병렬말뭉치를 이용해서 Transformer 번역모델에 적용하여 전문용어를 찾아서 해석하는 모델을 구축한다. 각 문장은 음절 단위로 나뉘어 사전학습 된 KoCharELECTRA를 이용해서 임베딩한다. 제안된 모델은 약 69.3%의 어절단위 BLEU 점수를 보였다. 제안된 의학용어 해석기를 통해 대중이 의학문서를 좀 더 쉽게 접근할 수 있을 것이다.

  • PDF

머신러닝 모델을 활용한 모기 활동량 측정 (Measurement of Mosquito Activity using Machine Learning Model)

  • 이세훈;김기태;김영호;허유진
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.333-334
    • /
    • 2023
  • 본 논문에서는 모기 활동 수치를 측정하기 위한 효율적인 머신러닝 모델을 제안한다. 수집된 데이터의 분석을 통해 효율적인 모델을 선정한다. 또한 데이터셋의 상관관계를 분석하고 데이터 가중치에 따라 모기의 활동에 영향을 주는 환경이 무엇인지를 분석한다. 본 논문에서는 모델을 이용한 앱 개발하여 실질적으로 모델을 활용한 예시를 보이고 실생활에서의 해당 모델을 도입하였을 때 가져올 일상의 긍정적 효과를 보인다.

  • PDF

딥러닝-규칙기반 병행 모델을 이용한 특허문서의 자동 IPC 분류 방법 (Hybrid Approach Combining Deep Learning and Rule-Based Model for Automatic IPC Classification of Patent Documents)

  • 김용일;오유리;심우철;고봉수;이봉건
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.347-350
    • /
    • 2019
  • 인공지능 관련 기술의 발달로 다양한 분야에서 인공지능 활용에 대한 관심이 고조되고 있으며 전문영역에서도 기계학습 기법을 활용한 연구들이 활발하게 이루어지고 있다. 특허청에서는 분야별 전문지식을 가진 분류담당자가 출원되는 모든 특허에 국제특허분류코드(이하 IPC) 부여 작업을 수행하고 있다. IPC 분류와 같은 전문적인 업무영역에서 딥러닝을 활용한 자동 IPC 분류 서비스를 제공하기 위해서는 기계학습을 이용하는 분류 모델에 분야별 전문지식을 직관적으로 반영하는 것이 필요하다. 이를 위해 본 연구에서는 딥러닝 기반의 IPC 분류 모델과 전문지식이 반영된 분류별 어휘사전을 활용한 규칙기반 분류 모델을 병행하여 특허문서의 IPC분류를 자동으로 추천하는 방법을 제안한다.

  • PDF

대규모 언어 모델 기반 대학 입시상담 챗봇 (College Admissions Counseling ChatBot based on a Large Language Models)

  • 이세훈;이웅회;김지웅;노연수
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.371-372
    • /
    • 2023
  • 본 논문에서는 대규모 언어 모델(Large Language Models)을 기반으로 한 입학 상담용 챗봇을 설계하였다. 입시 전문 LLM은 Polyglot-ko 5.8B을 베이스 모델로 대학의 입시 관련 데이터를 수집, 가공한 후 데이터 증강을 하여 파인튜닝 하였다. 또한, 모델 성능 향상을 위해 RLHF의 후 공정을 진행하였다. 제안 챗봇은 생성한 입시 LLM을 기반으로 웹브라우저를 통해 접근하여 입시 상담 자동 응답 서비스를 활용할 수 있다.

  • PDF

사전학습 언어 모델을 활용한 트랜스포머 기반 텍스트 요약 (Transformer-based Text Summarization Using Pre-trained Language Model)

  • 송의석;김무성;이유린;안현철;김남규
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.395-398
    • /
    • 2021
  • 최근 방대한 양의 텍스트 정보가 인터넷에 유통되면서 정보의 핵심 내용을 파악하기가 더욱 어려워졌으며, 이로 인해 자동으로 텍스트를 요약하려는 연구가 활발하게 이루어지고 있다. 텍스트 자동 요약을 위한 다양한 기법 중 특히 트랜스포머(Transformer) 기반의 모델은 추상 요약(Abstractive Summarization) 과제에서 매우 우수한 성능을 보이며, 해당 분야의 SOTA(State of the Art)를 달성하고 있다. 하지만 트랜스포머 모델은 매우 많은 수의 매개변수들(Parameters)로 구성되어 있어서, 충분한 양의 데이터가 확보되지 않으면 이들 매개변수에 대한 충분한 학습이 이루어지지 않아서 양질의 요약문을 생성하기 어렵다는 한계를 갖는다. 이러한 한계를 극복하기 위해 본 연구는 소량의 데이터가 주어진 환경에서도 양질의 요약문을 생성할 수 있는 문서 요약 방법론을 제안한다. 구체적으로 제안 방법론은 한국어 사전학습 언어 모델인 KoBERT의 임베딩 행렬을 트랜스포머 모델에 적용하는 방식으로 문서 요약을 수행하며, 제안 방법론의 우수성은 Dacon 한국어 문서 생성 요약 데이터셋에 대한 실험을 통해 ROUGE 지표를 기준으로 평가하였다.

  • PDF

지식경영시스템 선정을 위한 평가모델 개발 (공공기관을 중심으로) (Development of Evaluation model for KMS Selection)

  • 김종철;박희준
    • 한국IT서비스학회:학술대회논문집
    • /
    • 한국IT서비스학회 2007년도 추계학술대회
    • /
    • pp.95-100
    • /
    • 2007
  • 지식경영시스템은 조직 경쟁력들 향상시키는 도구로서 민간기업 뿐만 아니라 정부기관에 까지 널리 도입되고 있으며 국내 정주기관의 경우 KMS 전문개발업체에 의해서 조직특성에 맞게 업그레이드 또는 새로이 구축하는 실정이다. 반면 매년 늘어나는 KMS 전문 개발업체의 개발 추이에도 불구하고 KMS 전문 개발업체 개발 시 가장 중요한 쟁점인 KMS 전문 개발업체 선정에 관한 연구는 미비한 실정이다. 따라서 본 연구는 공공기관에 적합한 KMS 전문 개발업체를 선정하기 위해 계층적 분석기법들 적용하여 보다 객관적이고 공정한 KMS 평가모델을 제안한다.

  • PDF

CNN과 LSTM을 결합한 콘크리트 균열 예측 모델 (Concrete Crack Prediction Model Combining CNN and LSTM)

  • 이동은;김성진;윤영현;백재순
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.73-74
    • /
    • 2023
  • 본 논문은 교량 안전에 관련하여 CNN과 LSTM을 결합한 모델을 사용해 콘크리트 균열을 미리 에측한다. 이미지 데이터는 CNN을 통해 처리되고, 시계열 데이러는 LSTM을 통해 처리가 된다. 훈련된 모델을 사용해 새로운 이미지와 시계열 데이터에 대한 균열 예측을 수행한다.

  • PDF

BEGAN을 통해 한국인 얼굴 데이터 생성을 하는데 최적의 HyperParameter (Optimal Hyper Parameter for Korean Face Data Generation with BEGAN)

  • 조규철;김산
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.459-460
    • /
    • 2021
  • 본 논문에서는 BEGAN을 활용한 한국인 얼굴 데이터 생성을 위한 최적의 Hyper Parameter를 제안한다. 연구에서는 GAN의 발전된 모델인 BEGAN을 이용한다. 위의 모델을 작성하기 위하여 본 논문에서는 Anaconda 기반의 Jupyter Notebook에서 Python Tensorflow 모델을 작성하여 테스트하고, 만들어진 모델을 FID를 통해 모델의 성능을 비교한다. 본 연구에서는 제안하는 방법들을 통해서 만들어진 모델을 이용해 한국인 얼굴 데이터를 구하고, 생성된 이미지에 대한 정량적인 평가를 진행한다.

  • PDF

추가 사전학습 기반 지식 전이를 통한 국가 R&D 전문 언어모델 구축 (Building Specialized Language Model for National R&D through Knowledge Transfer Based on Further Pre-training)

  • 유은지;서수민;김남규
    • 지식경영연구
    • /
    • 제22권3호
    • /
    • pp.91-106
    • /
    • 2021
  • 최근 딥러닝 기술이 빠르게 발전함에 따라 국가 R&D 분야의 방대한 텍스트 문서를 다양한 관점에서 분석하기 위한 수요가 급증하고 있다. 특히 대용량의 말뭉치에 대해 사전학습을 수행한 BERT(Bidirectional Encoder Representations from Transformers) 언어모델의 활용에 대한 관심이 높아지고 있다. 하지만 국가 R&D와 같이 고도로 전문화된 분야에서 높은 빈도로 사용되는 전문어는 기본 BERT에서 충분히 학습이 이루어지지 않은 경우가 많으며, 이는 BERT를 통한 전문 분야 문서 이해의 한계로 지적되고 있다. 따라서 본 연구에서는 최근 활발하게 연구되고 있는 추가 사전학습을 활용하여, 기본 BERT에 국가 R&D 분야 지식을 전이한 R&D KoBERT 언어모델을 구축하는 방안을 제시한다. 또한 제안 모델의 성능 평가를 위해 보건의료, 정보통신 분야의 과제 약 116,000건을 대상으로 분류 분석을 수행한 결과, 제안 모델이 순수한 KoBERT 모델에 비해 정확도 측면에서 더 높은 성능을 나타내는 것을 확인하였다.

CCTV를 이용한 터널내 사고감지 시스템 (Accident Detection System in Tunnel using CCTV)

  • 이세훈;이승엽;노영훈
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.3-4
    • /
    • 2021
  • 폐쇄된 터널 내부에서는 사고가 일어날 경우 외부에서는 터널 내 상황을 알 수가 없어 경미한 사고라 하더라도 대형 후속 2차 사고로 이어질 가능성이 크다. 또한영상탐지로사고 상황의 오검출을 줄이기 위해서, 본 연구에서는기존의 많은 CNN 모델 중 보유한 데이터에 가장 적합한 모델을 선택하는 과정에서 가장 좋은 성능을 보인 VGG16 모델을 전이학습 시키고 fully connected layer의 일부 layer에 Dropout을 적용시켜 Overfitting을일부방지하는 CNN 모델을 생성한 뒤Yolo를 이용한 영상 내 객체인식, OpenCV를 이용한 영상 프레임 내에서 객체의ROI를 추출하고이를 CNN 모델과 비교하여오검출을 줄이면서 사고를 검출하는 시스템을 제안하였다.

  • PDF