최근 COVID-19로 인해 대중의 의학 분야 관심이 증가하고 있다. 대부분의 의학문서는 전문용어인 의학용어로 구성되어 있어 대중이 이를 보고 이해하기에 어려움이 있다. 의학용어를 쉬운 뜻으로 풀이하는 모델을 이용한다면 대중이 의학 문서를 쉽게 이해할 수 있을 것이다. 이런 문제를 완화하기 위해서 본 논문에서는 Transformer 기반 번역 모델을 이용한 의학용어 탐지 및 해석 모델을 제안한다. 번역 모델에 적용하기 위해 병렬말뭉치가 필요하다. 본 논문에서는 다음과 같은 방법으로 병렬말뭉치를 구축한다: 1) 의학용어 사전을 구축한다. 2) 의학 드라마의 자막으로부터 의학용어를 찾아서 그 뜻풀이로 대체한다. 3) 원자막과 뜻풀이가 포함된 자막을 나란히 배열한다. 구축된 병렬말뭉치를 이용해서 Transformer 번역모델에 적용하여 전문용어를 찾아서 해석하는 모델을 구축한다. 각 문장은 음절 단위로 나뉘어 사전학습 된 KoCharELECTRA를 이용해서 임베딩한다. 제안된 모델은 약 69.3%의 어절단위 BLEU 점수를 보였다. 제안된 의학용어 해석기를 통해 대중이 의학문서를 좀 더 쉽게 접근할 수 있을 것이다.
본 논문에서는 모기 활동 수치를 측정하기 위한 효율적인 머신러닝 모델을 제안한다. 수집된 데이터의 분석을 통해 효율적인 모델을 선정한다. 또한 데이터셋의 상관관계를 분석하고 데이터 가중치에 따라 모기의 활동에 영향을 주는 환경이 무엇인지를 분석한다. 본 논문에서는 모델을 이용한 앱 개발하여 실질적으로 모델을 활용한 예시를 보이고 실생활에서의 해당 모델을 도입하였을 때 가져올 일상의 긍정적 효과를 보인다.
인공지능 관련 기술의 발달로 다양한 분야에서 인공지능 활용에 대한 관심이 고조되고 있으며 전문영역에서도 기계학습 기법을 활용한 연구들이 활발하게 이루어지고 있다. 특허청에서는 분야별 전문지식을 가진 분류담당자가 출원되는 모든 특허에 국제특허분류코드(이하 IPC) 부여 작업을 수행하고 있다. IPC 분류와 같은 전문적인 업무영역에서 딥러닝을 활용한 자동 IPC 분류 서비스를 제공하기 위해서는 기계학습을 이용하는 분류 모델에 분야별 전문지식을 직관적으로 반영하는 것이 필요하다. 이를 위해 본 연구에서는 딥러닝 기반의 IPC 분류 모델과 전문지식이 반영된 분류별 어휘사전을 활용한 규칙기반 분류 모델을 병행하여 특허문서의 IPC분류를 자동으로 추천하는 방법을 제안한다.
본 논문에서는 대규모 언어 모델(Large Language Models)을 기반으로 한 입학 상담용 챗봇을 설계하였다. 입시 전문 LLM은 Polyglot-ko 5.8B을 베이스 모델로 대학의 입시 관련 데이터를 수집, 가공한 후 데이터 증강을 하여 파인튜닝 하였다. 또한, 모델 성능 향상을 위해 RLHF의 후 공정을 진행하였다. 제안 챗봇은 생성한 입시 LLM을 기반으로 웹브라우저를 통해 접근하여 입시 상담 자동 응답 서비스를 활용할 수 있다.
최근 방대한 양의 텍스트 정보가 인터넷에 유통되면서 정보의 핵심 내용을 파악하기가 더욱 어려워졌으며, 이로 인해 자동으로 텍스트를 요약하려는 연구가 활발하게 이루어지고 있다. 텍스트 자동 요약을 위한 다양한 기법 중 특히 트랜스포머(Transformer) 기반의 모델은 추상 요약(Abstractive Summarization) 과제에서 매우 우수한 성능을 보이며, 해당 분야의 SOTA(State of the Art)를 달성하고 있다. 하지만 트랜스포머 모델은 매우 많은 수의 매개변수들(Parameters)로 구성되어 있어서, 충분한 양의 데이터가 확보되지 않으면 이들 매개변수에 대한 충분한 학습이 이루어지지 않아서 양질의 요약문을 생성하기 어렵다는 한계를 갖는다. 이러한 한계를 극복하기 위해 본 연구는 소량의 데이터가 주어진 환경에서도 양질의 요약문을 생성할 수 있는 문서 요약 방법론을 제안한다. 구체적으로 제안 방법론은 한국어 사전학습 언어 모델인 KoBERT의 임베딩 행렬을 트랜스포머 모델에 적용하는 방식으로 문서 요약을 수행하며, 제안 방법론의 우수성은 Dacon 한국어 문서 생성 요약 데이터셋에 대한 실험을 통해 ROUGE 지표를 기준으로 평가하였다.
지식경영시스템은 조직 경쟁력들 향상시키는 도구로서 민간기업 뿐만 아니라 정부기관에 까지 널리 도입되고 있으며 국내 정주기관의 경우 KMS 전문개발업체에 의해서 조직특성에 맞게 업그레이드 또는 새로이 구축하는 실정이다. 반면 매년 늘어나는 KMS 전문 개발업체의 개발 추이에도 불구하고 KMS 전문 개발업체 개발 시 가장 중요한 쟁점인 KMS 전문 개발업체 선정에 관한 연구는 미비한 실정이다. 따라서 본 연구는 공공기관에 적합한 KMS 전문 개발업체를 선정하기 위해 계층적 분석기법들 적용하여 보다 객관적이고 공정한 KMS 평가모델을 제안한다.
본 논문은 교량 안전에 관련하여 CNN과 LSTM을 결합한 모델을 사용해 콘크리트 균열을 미리 에측한다. 이미지 데이터는 CNN을 통해 처리되고, 시계열 데이러는 LSTM을 통해 처리가 된다. 훈련된 모델을 사용해 새로운 이미지와 시계열 데이터에 대한 균열 예측을 수행한다.
본 논문에서는 BEGAN을 활용한 한국인 얼굴 데이터 생성을 위한 최적의 Hyper Parameter를 제안한다. 연구에서는 GAN의 발전된 모델인 BEGAN을 이용한다. 위의 모델을 작성하기 위하여 본 논문에서는 Anaconda 기반의 Jupyter Notebook에서 Python Tensorflow 모델을 작성하여 테스트하고, 만들어진 모델을 FID를 통해 모델의 성능을 비교한다. 본 연구에서는 제안하는 방법들을 통해서 만들어진 모델을 이용해 한국인 얼굴 데이터를 구하고, 생성된 이미지에 대한 정량적인 평가를 진행한다.
최근 딥러닝 기술이 빠르게 발전함에 따라 국가 R&D 분야의 방대한 텍스트 문서를 다양한 관점에서 분석하기 위한 수요가 급증하고 있다. 특히 대용량의 말뭉치에 대해 사전학습을 수행한 BERT(Bidirectional Encoder Representations from Transformers) 언어모델의 활용에 대한 관심이 높아지고 있다. 하지만 국가 R&D와 같이 고도로 전문화된 분야에서 높은 빈도로 사용되는 전문어는 기본 BERT에서 충분히 학습이 이루어지지 않은 경우가 많으며, 이는 BERT를 통한 전문 분야 문서 이해의 한계로 지적되고 있다. 따라서 본 연구에서는 최근 활발하게 연구되고 있는 추가 사전학습을 활용하여, 기본 BERT에 국가 R&D 분야 지식을 전이한 R&D KoBERT 언어모델을 구축하는 방안을 제시한다. 또한 제안 모델의 성능 평가를 위해 보건의료, 정보통신 분야의 과제 약 116,000건을 대상으로 분류 분석을 수행한 결과, 제안 모델이 순수한 KoBERT 모델에 비해 정확도 측면에서 더 높은 성능을 나타내는 것을 확인하였다.
폐쇄된 터널 내부에서는 사고가 일어날 경우 외부에서는 터널 내 상황을 알 수가 없어 경미한 사고라 하더라도 대형 후속 2차 사고로 이어질 가능성이 크다. 또한영상탐지로사고 상황의 오검출을 줄이기 위해서, 본 연구에서는기존의 많은 CNN 모델 중 보유한 데이터에 가장 적합한 모델을 선택하는 과정에서 가장 좋은 성능을 보인 VGG16 모델을 전이학습 시키고 fully connected layer의 일부 layer에 Dropout을 적용시켜 Overfitting을일부방지하는 CNN 모델을 생성한 뒤Yolo를 이용한 영상 내 객체인식, OpenCV를 이용한 영상 프레임 내에서 객체의ROI를 추출하고이를 CNN 모델과 비교하여오검출을 줄이면서 사고를 검출하는 시스템을 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.