• Title/Summary/Keyword: 전륜

Search Result 70, Processing Time 0.037 seconds

Impact Dynamic Analysis for the Wheel-Type Landing Gear System of Helicopter (헬리콥터 휠타입 착륙장치 충돌특성 연구)

  • Park, Hyo-Geun;Kim, Dong-Man;Kim, Dong-Hyun;Cho, Yun-Mo;Chung, Jae-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.12-22
    • /
    • 2008
  • In this study, the dynamic characteristics for the wheel-type landing gear system of helicopter have been analyzed. Nonlinear multi-body dynamic models of the landing gear system are constructed and the equations of motion, kinematics and internal forces of shock strut are considered. In addition, flexibility effect of the wheel axle with equivalent beam element is taken into account. General purpose commercial finite code, SAMCEF which includes MECANO module is applied. The results of dynamic simulation for various landing and weight conditions are presented and compared with each other. Based on the results, characteristics of impact dynamic behaviors of the landing gear system are practically investigated.

Integrated Chassis Control with Electronic Stability Control and Active Front Steering under Saturation of Front Lateral Tire Forces (전륜 횡력의 포화를 고려한 ESC와 AFS의 통합 섀시 제어)

  • Yim, Seongjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.903-909
    • /
    • 2015
  • This article presents an integrated chassis control with electronic stability control (ESC) and active front steering (AFS) under saturation of front lateral tire force. Regardless of the use of AFS, the front lateral tire forces can be easily saturated. Under the saturated front lateral tire force, AFS cannot be effective to generate a control yaw moment needed for the integrated chassis control. In this paper, new integrated chassis control is proposed in order to limit the use of AFS in case the front lateral tire force is saturated. Weighed pseudo-inverse control allocation (WPCA) with variable weight is adopted to adaptively use the AFS. To check the effectiveness of the proposed scheme, simulation is performed on a vehicle simulation package, CarSim. From simulation, the proposed integrated chassis control is effective for vehicle stability control under saturated front lateral tire force.

Optimal Power Distribution for an Electric Vehicle with Front In-line Rear In-wheel Motors (전륜 인라인 후륜 인휠 모터 적용 전기자동차의 최적 동력 분배)

  • Kim, Jeongmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.76-82
    • /
    • 2014
  • In this paper, an optimal power distribution algorithm is proposed for the small electric vehicle with front in-line and rear in-wheel motors. First, it is assumed that the vehicle driving torque and velocity are given conditions. And, an optimal problem is defined that finding the front and rear motor torques which minimizes the battery power. From the above optimization problem, the optimized front-rear motor torque distribution map is obtained. And, the vehicle simulations are performed to verify the performance of the optimal power distribution algorithm which is proposed in this study. The simulations are performed based on the federal urban driving schedule for two cases which are constant ratio power distribution, and optimal power distribution. From the simulation results, it is found that the optimal power distribution shows the 6.3% smaller battery energy consumption than the constant ratio power distribution.

Effects on Vehicle Handling Performance according to Camber Angle Change of Front and Rear Wheel (전륜 및 후륜 캠버각 변화에 따른 차량 조종성능 효과 분석)

  • Park, Seong-Jun;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.23-29
    • /
    • 2011
  • In this study, a camber angle generating mechanism for front and rear suspension is suggested. An experimental device is implemented and tested. A full vehicle model with camber angle generating device by using ADAMS/Car is modeled. Step steer simulations are carried out for investigating the effects of vehicle handling performance due to camber angle change of front and rear wheel. According to results, the camber angle of rear suspension affects the vehicle handling performance during both simulations. Therefore, when the vehicle makes the right turn or left turn, left and right wheel of front and rear suspension should have the proper orientation for improving the handling performance, respectively.

Analysis on Triple Rear-end Collision between Wrecker, Towed Car and Driving Car (견인차-피견인차-주행차량의 3중 추돌사고 해석)

  • Cho, Jae-Ung;Kim, Eu-Gene
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.685-688
    • /
    • 2010
  • 사고 현장에서 사고 차량을 옮기거나 주차위반 차량을 견인사업소로 이동시키기 위해 주로 이용되고 있는 리프트식 견인차는 피견인차의 구동방식에 따라 차량의 전부 또는 후부을 들어 올려 구동 바퀴로 이동할 수 있도록 하는 특수차량이다. 본 논문에서는 견인중인 견인차와 이송중인 전륜 피견인차 및 일반 주행 중인 차량 사이에서 일어날 수 있는 3중 추돌사고를 일반적인 3중 추돌사고와 비교하여 견인 중에 발생하는 추돌사고가 얼마나 위험한지를 직접 확인한다. 각 차량은 CATIA를 이용하여 모델링하고 이를 상용 유한요소해석 프로그램인 ANSYS를 통하여 피견인차의 후부를 주행 차량이 들이 받는 추돌을 시뮬레이션한다. 또한 견인차가 피견인차를 들어 올려 발생되는 피견인차의 각도에 따른 추돌의 영향을 해석한다.

  • PDF

Nose Landing Gear Drop-test Simulation using Numerical Analysis about Orifice (오리피스 유량해석을 통한 전륜 착륙장치의 착륙성능평가)

  • Hwang, Jaeup;Bae, Jaesung;Hwang, Jaihyuk;Hong, Yehsun;Park, Sangjoon;Chung, Taekyong
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2014
  • This thesis is simulated a aircraft nose landing gear drop-test. flow rate-to-pressure difference characteristics of damping orifices for a nose landing gear is investigated by CFD analyses. Orifice is kind of poppet valve type. it is simulated pressure drop with variable orifice area. it is simulated landing gear model by using ADAMS with CFD result. It's performance evaluated landing gear drop-test and analyzed the results.

A Study On The Robust Structure For Improvement of Front Insulator Noise Improvement (전륜 Insulator 이음 개선을 위한 강건 구조 방안 연구)

  • Lee, Sang Jong
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.197-206
    • /
    • 2017
  • Purpose: Clarify the cause of the noise by the front wheel strut insulator, which is located in close proximity to the driver's seat. Methods: The improvement mechanism was confirmed through failure analysis and reproduction test of the joint generation mechanism. In addition, the main factors were analyzed through principal test. Results: This paper describes the mechanism of occurrence of noise due to deterioration and hardness increase of rubber, deformation on severe road surface, foreign matter and water inflow in cold weather. Conclusion: We found that the insulator and body deformation can be minimized without increasing the thickness of the body and the insulator and reinforcing the body by dispersing the input load by applying load distribution structure instead of the local forming structure of the insulator in the insulator robust structure.

Development of Integrated Dynamics Control System of SUV Vehicle with Front and Rear Steering System (SUV 차량의 전륜 및 후륜 조향 장치를 이용한 통합운동제어시스템 설계)

  • Song, Jeonghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.31-37
    • /
    • 2018
  • In order to improve stability and controllability of SUV vehicle, Integrated Dynamics Control system with Steering system (IDCS) was developed. Eight degree of freedom vehicle model and front and rear steering system model were used to design IDCS system. It also employs Fuzzy logic control method to design integrate control system. The performance of IDCS was evaluated with two road conditions and several driving conditions. The result shows that SUV vehicle with IDCS tracked the reference yaw rate under all tested conditions. IDCS reduced the body slip angle also. It represents IDCS improves vehicle stability and steerability.

Study for Boom type speed sprayer Development (I) - Survey for Boom type speed sprayer development - (붐식 스피드 스프레이어 개발을 위한 기초연구 (I) - 붐식 스피드 스프레이어 개발을 위한 현황 조사 -)

  • Choi, Hwon;Shin, ChangSeop;Kim, TaeHan
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.5-5
    • /
    • 2017
  • 방제 작업은 병해충을 줄여 농산물의 품질과 생산량을 높이기 위한 필수 작업이다. 하지만 방제 작업은 고온 다습한 환경에서 작업하여 고된 작업 강도와 농민의 농약 중독 문제, 고령화 여성화로 인한 농가 일손 부족 문제로 농촌에서는 기피하고 있는 작업 중 하나이다. 이러한 점을 보완하기 위해 동력 살포기와 같은 기계를 이용하여 살포 작업을 실시하고 있으며, 스피드 스프레이어의 경우 2015년 기준 2,073 대가 농가에 공급되어졌다. 스피드 스프레이어를 사용하는 농가는 점차 증가하고 있으나, 현재 스피드 스프레이어의 살포 방식의 경우 농약을 다량 살포함으로써, 농약의 낭비, 환경오염의 문제점이 나타나고 있다. 이러한 점을 보완하기 위해 최근에는 방제 작업의 방식이 붐을 이용한 방제 작업으로 바뀌어가고 있는 추세이다. 붐 방제기의 경우 붐에 노즐을 배치하여 작물에 근접한 위치에서 농약을 정밀 살포하며, 스피드 스프레이어와 다르게 농약의 낭비를 줄일 수 있으며, 농약의 살포량을 제어하기 쉬운 장점이 있다. 본 연구에서는 기존의 트랙터 부착형 붐 방제기가 아닌 스피드 스프레이어를 개선한 붐식 스피드 스프레이어를 개발하기 위하여 현재 사용되고 있는 붐 방제기의 연구 동향 및 제품을 소개하고 개발에 필요한 기초 자료로 활용하고자 한다. 기존의 붐 방제기는 트랙터에 부착하는 형태로 개발되어졌으며 트랙터의 부착위치에 따라 전륜, 후륜형으로 나뉘고, 작물의 크기에 따라서 붐의 높이 및 붐의 각도를 조절하는 구조로 제작하여 사용되고 있다.

  • PDF

Development of New Numerical Model and Controller of AFS System (AFS 시스템의 새로운 수학적 모델 및 제어기 개발)

  • Song, Jeonghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.59-67
    • /
    • 2014
  • A numerical model and a controller of Active Front wheel Steer (AFS) system are designed in this study. The AFS model consists of four sub models, and the AFS controller uses sliding mode control and PID control methods. To test this model and controller an Integrated Dynamics Control with Steering (IDCS) system is also designed. The IDCS system integrates an AFS system and an ARS (Active Rear wheel Steering) system. The AFS controller and IDCS controller are compared under several driving and road conditions. An 8 degree of freedom vehicle model is also employed to test the controllers. The results show that the model of AFS system shows good kinematic steering assistance function. Steering ratio varies depends on vehicle velocity between 12 and 24. Kinematic stabilization function also shows good performance because yaw rate of AFS vehicle tracks the reference yaw rate. IDCS shows improved responses compared to AFS because body side slip angle is also reduced. This result also proves that AFS system shows satisfactory result when it is integrated with another chassis system. On a split-m road, two controllers forced the vehicle to proceed straight ahead.