• Title/Summary/Keyword: 전력 할당

Search Result 406, Processing Time 0.024 seconds

Downlink Power Allocation for Relay Frequency Reuse (릴레이 주파수재사용을 위한 하향링크 전력 자원 할당)

  • Oh, Chang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.98-104
    • /
    • 2012
  • We consider the optimum power allocation problem for downlink system throughput maximization in a 2 time slotted relay interference channel. Base station (BS) transmits power to Mobile Station (MS) and Relay Station (RS) in time slot 1 (orthogonal channel). In time slot 2, BS and RS transmit power to each MS, while causing cochannel interference to each other. The obtained optimum power allocation scheme allows simultaneous transmissions of BS and RS when the interference level in time slot 2 is low. However, when the interference level is high, RS shuts down its power. Numerical results are provided to support our analysis.

A RTL Binding Technique and Low Power Technology Mapping consider CPLD (CPLD를 고려한 RTL 바인딩과 저전력 기술 매핑)

  • Kim Jae-Jin;Lee Kwan-Houng
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.1-6
    • /
    • 2006
  • In this paper, a RTL binding technique and low power technology mapping consider CPLD is proposed. Allocation processing selected module consider the module calculation after scheduling process for circuit by HDL. Select CPLD for constrain after allocation. A Boolean equation is partitioned for CLB by allocated modules. The proposed binding algorithm is description using optimum CLB within a CPLD consider low power. The proposed algorithm is examined by using 16 bit FIR filter. In the case that applicate the algorithm, the experiments results show reduction in the power consumption by 43% comparing with that of non application algorithm.

  • PDF

Transmit Power Allocation for Soft Frequency Reuse in Coordinated Cellular Systems (인접셀간 협력하는 셀룰라 시스템에서 소프트 주차수 재사용을 위한 송신전력할당 기법)

  • Kim, Dong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4A
    • /
    • pp.316-323
    • /
    • 2009
  • Power allocation of soft frequency reuse(SFR) to increase cell edge user throughput by reducing inter-cell interference is proposed for coordinated cellular systems. SFR is the effective technique to increase cell edge user throughput, however, it costs the degradation of total system throughput. The cost increases when SFR operated in distributed resource controlled systems fails to be fast adaptive in the change of user distribution. The proposed scheme enables coordinated cells to control transmit power adaptively depending on user distribution so that it minimizes the loss of system throughput introduced from SFR while it guarantees enhancement of cell edge user throughput. Through system level simulation considering neighboring two cells, evaluation result for adaptive power allocation is shown compared with static power allocation.

A Unified Framework for Joint Optimal Design of Subchannel Matching and Power Allocation in Multi-hop Relay Network (멀티홉 중계 네트워크에서 최적 부채널 및 전력 할당을 위한 통합적 접근법)

  • Jang, Seung-Hun;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.646-653
    • /
    • 2010
  • This paper provides a unified framework for the joint optimal subchannel and power allocation in multi-hop relay network, where each node in the network has multiple parallel subchannels such as in OFDM or MIMO system. When there are multiple parallel subchannels between nodes, the relay node decides how to match the subchannel at the first hop with the one at the second hop aside from determining the power allocation. Joint optimal design of subchannel matching and power allocation is, in general, known to be very difficult to solve due to the combinatorial nature involved in subchannel matching. Despite this difficulty, we use a simple rearrangement inequality and show that seemingly difficult problems can be efficiently solved. This includes several existing solution methods as special cases. We also provide various design examples to show the effectiveness of the proposed framework.

Capacity Optimization of a 802.16e OPDMA/TDD Cellular System using the Joint Allocation Algorithm of Sub-charmel and Transmit Power - Part II : Sub-channel Allocation in the Uplink Using the Channel Sounding and Initial Transmit Power Decision Algorithm According to the User's Throughput (802.16e OFDMA/TDD 셀룰러 시스템의 성능 최적화를 위한 부채널과 전송전력 결합 할당 알고리즘 - Part II : 상향링크에서 Channel Sounding을 통한 부채널 할당 및 사용자의 수율에 따른 초기전송전력 결정 알고리즘)

  • Ko, Sang-Jun;Chang, Kyung-Hi;Kim, Jae-Hyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9A
    • /
    • pp.888-897
    • /
    • 2007
  • In this paper, we propose an uplink dynamic resource allocation algorithm to increase sector throughput and fairness among users in 802.16e OFDMA TDD system. In uplink, we address the difference between uplink and downlink channel state information in 802.16e OFDMA TDD system. The simulation results show that not only an increment of 10% of sector throughput but higher level of fairness is achieved by round-robin using the FLR and the rate / margin adaptive inner closed-loop power control algorithm. The FLR algorithm determines the number of sub-channels to be allocated to the user according to the user's position. Also, we get 31.8% more sector throughput compared with the round-robin using FLR by FASA algorithm using uplink channel state information. User selection, sub-channel allocation, power allocation algorithms and simulation methodology are mentioned in Part I.

A Channel Assignment Scheme Using Power Allocation Concept for CDMA Cellular System (CDMA 셀룰러 시스템에서 전력할당개념을 이용한 채널할당기법)

  • Lee, Dong-Myung;Jun, Moon-Seog
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.3
    • /
    • pp.692-698
    • /
    • 1999
  • In this paper, we proposed the channel assignment scheme for the CDMA(Code Division Multiple Access) cellular system using power allocation concept. Also, the performance of the proposed scheme was analyzed and it was compared with the channel assignment scheme using the fixed power allocation method in the CDMA cellular system. The proposed scheme allocates the power adaptively in according to the traffic loads and the traffic distribution pattern of neighbor cells in the forward link. We found that total call blocking probability (Pr) is more dependent on blocking probability($P_B$) than outage probability (Po) under physical number of channels ($C_{th}$)=30. Pr(Call Blocking Probability) is dependent on $P_B$(Blocking Probability) and Po(Outage Probability) at the same ratio under $C_{th}$=32, in which case P$P_{TA}$(blocking probability for the adaptive power allocation) is greater than $P_{TF}$(blocking probability for the fixed power allocation) about 6%.

  • PDF

Consensus-Based Distributed Algorithm for Optimal Resource Allocation of Power Network under Supply-Demand Imbalance (수급 불균형을 고려한 전력망의 최적 자원 할당을 위한 일치 기반의 분산 알고리즘)

  • Young-Hun, Lim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.440-448
    • /
    • 2022
  • Recently, due to the introduction of distributed energy resources, the optimal resource allocation problem of the power network is more and more important, and the distributed resource allocation method is required to process huge amount of data in large-scale power networks. In the optimal resource allocation problem, many studies have been conducted on the case when the supply-demand balance is satisfied due to the limitation of the generation capacity of each generator, but the studies considering the supply-demand imbalance, that total demand exceeds the maximum generation capacity, have rarely been considered. In this paper, we propose the consensus-based distributed algorithm for the optimal resource allocation of power network considering the supply-demand imbalance condition as well as the supply-demand balance condition. The proposed distributed algorithm is designed to allocate the optimal resources when the supply-demand balance condition is satisfied, and to measure the amount of required resources when the supply-demand is imbalanced. Finally, we conduct the simulations to verify the performance of the proposed algorithm.

Study on Power Allocation for Heterogeneous Networks Based on Asynchronous TDD (비동기식 TDD 기반의 이종 네트워크를 위한 전력 할당 방식 연구)

  • Min, Kyungsik;Kim, Taehyoung;Park, Sangjoon;Choi, Sooyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.10
    • /
    • pp.664-673
    • /
    • 2014
  • This paper analyzes the power allocation scheme to maximize the sum-rate for heterogeneous networks based on asynchronous time division duplex. We consider heterogeneous networks where a small cell exists in the macro cell coverage and the small cell and the macro cell share the same time-frequency resources. We formulate the optimization problem which maximizes the sum-rate of the heterogeneous network subject to the target signal-to-interference-plus-noise ratio. We analyze the feasible region in order for the optimal solution to exists and the optimal power allocation scheme for maximizing the sum-rate. Simulation results show that the proposed power allocation schemes outperform the maximum power transmission scheme.

Power Allocation to Improve Data-Rate Fairness of Non-orthogonal Multiple Access Users (비직교 다중접속 사용자의 데이터 전송률 공정성 개선을 위한 전력 할당 기법)

  • Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1117-1122
    • /
    • 2019
  • In this paper, a power allocation scheme is proposed to improve the fairness of user data rates in downlink non-orthogonal multiple access systems with one base station and two users. In particular, the power allocation scheme is presented to maximize the fairness of average user data rates assuming independent Rayleigh fading channels, where the fairness maximization is achieved when the average user data rates are equal. For the fairness evaluation, hence approximate expressions for the average user data rates and the average sum date rate of the proposed scheme are provided by using high signal-to-noise ratio approximation. Through simulation investigation, the derived approximate expressions for the average data rates are verified, and it is shown that the proposed scheme is superior to the conventional power allocation schemes in terms of the fairness of the average user data rates.

Setting Up/Down Step-Size in Open Loop Power Control for WiBro Reverse Link (와이브로 상향링크에서 개방형 전력제어를 위한 상/하향 전력제어 계단값 설정 방법)

  • Guk, Hyun;Kim, Jung-Bin;Kim, Dong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.686-693
    • /
    • 2007
  • In this paper, we describe how to set up/down step-size in open loop power control for WiBro reverse link. Since open loop power control does not use feedback information, it is difficult to efficiently use wireless resource with accurate power control. We also provides a method of estimating levels of noise and interference. With numerical investigation, asymmetric up/down power-control step-size is shown to be promising to achieve high sector throughput as well as low error rate.